Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2016_36_1-2_a5, author = {Kozio{\l}, Arkadiusz}, title = {Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure and structured mean vector}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {93--113}, publisher = {mathdoc}, volume = {36}, number = {1-2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a5/} }
TY - JOUR AU - Kozioł, Arkadiusz TI - Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure and structured mean vector JO - Discussiones Mathematicae. Probability and Statistics PY - 2016 SP - 93 EP - 113 VL - 36 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a5/ LA - en ID - DMPS_2016_36_1-2_a5 ER -
%0 Journal Article %A Kozioł, Arkadiusz %T Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure and structured mean vector %J Discussiones Mathematicae. Probability and Statistics %D 2016 %P 93-113 %V 36 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a5/ %G en %F DMPS_2016_36_1-2_a5
Kozioł, Arkadiusz. Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure and structured mean vector. Discussiones Mathematicae. Probability and Statistics, Tome 36 (2016) no. 1-2, pp. 93-113. http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a5/
[1] M. Fonseca, J.T. Mexia and R. Zmyślony, Least squares and generalized least squares in models with orthogonal block structure, J. Statistical Planning and Inference 140 (5) (2010), 1346-1352.
[2] H. Drygas, The Coordinate-Free Approach to Gauss-Markov Estimation (Berlin, Heidelberg, Springer, 1970).
[3] S. Gnot, W. Klonecki and R. Zmyślony, Uniformly minimum variance unbiased estimation in various classes of estimators, Statistics 8 (2) (1977), 199-210.
[4] S. Gnot, W. Klonecki and R. Zmyślony, Best unbiased estimation: a coordinate free-approach, Probab. and Statis. 1 (1) (1980), 1-13.
[5] P. Jordan, J. von Neumann and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math. 35 (1) (1934), 29-64.
[6] W. Kruskal, When are Gauss-Markov and Least Squares Estimators Identical, A Coordinate-Free Approach, Ann. Math. Stat. 39 (1) (1968), 70-75.
[7] E.L. Lehmann and G. Casella, Theory of Point Estimation (Second Edition, Springer, 1998).
[8] A. Roy and R. Leiva, Estimating and testing a structured covariance matrix for three-level multivariate data, Comm. Statist. Theory Methods 40 (11) (2011), 1945-1963.
[9] A. Roy and M. Fonseca, Linear models with doubly exchangeable distributed errors, Comm. Statist. Theory Methods 41 (2012), 2545-2569.
[10] A. Roy, R. Zmyślony, M. Fonseca and R. Leiva, Optimal estimation for doubly multivariate data in blocked compound symmetric covariance structure, J. Multivariate Analysis, 2016.
[11] A. Roy, A. Kozioł, R. Zmyślony, M. Fonseca and R. Leiva, Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure, Statistics 144 (2016), 81-90.
[12] J.F. Seely, Quadratic subspaces and completeness, Ann. Math. Statist. 42 (2) (1971), 710-721.
[13] J.F. Seely, Completeness for a family of multivariate normal distributions, Ann. Math. Statist. 43 (1972), 1644-1647.
[14] J.F. Seely, Minimal sufficient statistics and completeness for multivariate normal families, Sankhya (Statistics). Indian J. Statist. Ser. A 39 (2) (1977), 170-185.
[15] R. Zmyślony, On estimation of parameters in linear models, Appl. Math. XV (1976), 271-276.
[16] R. Zmyślony, A characterization of best linear unbiased estimators in the general linear model, Lecture Notes in Statistics 2 (1978), 365-373.
[17] R. Zmyślony, Completeness for a family of normal distributions, Math. Stat. Banach Center Publications 6 (1980), 355-357.