A note on robust estimation in logistic regression model
Discussiones Mathematicae. Probability and Statistics, Tome 36 (2016) no. 1-2, pp. 43-51

Voir la notice de l'article provenant de la source Library of Science

Computationally attractive Fisher consistent robust estimation methods based on adaptive explanatory variables trimming are proposed for the logistic regression model. Results of a Monte Carlo experiment and a real data analysis show its good behavior for moderate sample sizes. The method is applicable when some distributional information about explanatory variables is available.
Keywords: logistic model, robust estimation
@article{DMPS_2016_36_1-2_a2,
     author = {Bednarski, Tadeusz},
     title = {A note on robust estimation in logistic regression model},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {36},
     number = {1-2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a2/}
}
TY  - JOUR
AU  - Bednarski, Tadeusz
TI  - A note on robust estimation in logistic regression model
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2016
SP  - 43
EP  - 51
VL  - 36
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a2/
LA  - en
ID  - DMPS_2016_36_1-2_a2
ER  - 
%0 Journal Article
%A Bednarski, Tadeusz
%T A note on robust estimation in logistic regression model
%J Discussiones Mathematicae. Probability and Statistics
%D 2016
%P 43-51
%V 36
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a2/
%G en
%F DMPS_2016_36_1-2_a2
Bednarski, Tadeusz. A note on robust estimation in logistic regression model. Discussiones Mathematicae. Probability and Statistics, Tome 36 (2016) no. 1-2, pp. 43-51. http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a2/