Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2016_36_1-2_a1, author = {Kumar, Devendra}, title = {k-th rekord values from {Dagum} distribution and characterization}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {25--41}, publisher = {mathdoc}, volume = {36}, number = {1-2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a1/} }
TY - JOUR AU - Kumar, Devendra TI - k-th rekord values from Dagum distribution and characterization JO - Discussiones Mathematicae. Probability and Statistics PY - 2016 SP - 25 EP - 41 VL - 36 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a1/ LA - en ID - DMPS_2016_36_1-2_a1 ER -
Kumar, Devendra. k-th rekord values from Dagum distribution and characterization. Discussiones Mathematicae. Probability and Statistics, Tome 36 (2016) no. 1-2, pp. 25-41. http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a1/
[1] B.C. Arnold, N. Balakrishnan and H.N. Nagaraja, A First Course in Order Statistics (John Wiley, New York, 1992).
[2] B.C. Arnold, N. Balakrishnan and H.N. Nagaraja, Records (John Wiley, New York, 1998).
[3] C. Dagum, A new model of personal income distribution: Specification and estimation, Econ. Appl. XXX (1977), 413-436.
[4] C. Kleiber and S. Kotz, Statistical Size Distribution in Economics and Actuarial Sciences (John Wiley Sons, Inc., Hoboken, NJ, 2003).
[5] C. Kleiber, A guide to the Dagum distribution, in Modeling Income Distributions and Lorenz Curves Series: Economic Studies in Inequality, Social Exclusion and Well-Being, 5, C. Duangkamon (Springer, New York, NY, 2008).
[6] D. Kumar and M.I. Khan, Recurrence relations for moments of kth record values from generalized beta II distribution and a characterization, Seluk Journal of Applied Mathematics 13 (2012), 75-82.
[7] D. Kumar, Explicit Expressions and statistical inference of generalized Rayleigh distribution based on lower record values, Math. Meth. Stat. 24 (2015), 225-241.
[8] D. Kumar, N. Jain and S. Gupta, The type I generalized half logistic distribution based on upper record values, J. Probab. Stat. 2015 (2015). doi: 01-11
[9] G.D. Lin, On a moment problem, Tohoku Math. J. 38 (1986), 595-598.
[10] J. Saran and S.K. Singh, Recurrence relations for single and product moments of kth record values from linear exponential distribution and a characterization, Asian J. Math. Stat. 1 (2008), 159-164.
[11] K.S. Sultan and M.E. Moshref, Record values from generalized Pareto distribution and associated inference, Metrika 51 (2000), 105-116.
[12] K.N. Chandler, The distribution and frequency of record values, J. Roy. Statist. Soc., Ser. B 14 (1952), 220-228.
[13] M. Ahsanullah, Record Statistics (Nova Science Publishers, New York, 1995).
[14] N. Balakrishnan and A.C. Cohan, Order statistics and inference: estimation methods (Boston, MA, Academic Press, 1991).
[15] N. Balakrishnan and M. Ahsanullah, Recurrence relations for single and product moments of record values from generalized Pareto distribution, Comm. Statist. Theory and Methods 23 (1994), 2841-28526.
[16] N. Balakrishnan and M. Ahsanullah, Relations for single and product moments of record values from Lomax distribution, Sankhyā Ser. B 56 (1994), 140-146.
[17] N. Balakrishnan and M. Ahsanullah, Relations for single and product moments of record values from exponential distribution, J. Appl. Statist. Sci. 2 (1995), 73-87.
[18] N. Balakrishnan, P.S. Chan and M. Ahsanullah, Recurrence relations for moments of record values from generalized extreme value distribution, Comm. Statist. Theory and Methods 22 (1993), 1471-1482.
[19] P. Pawlas and D. Szynal, Relations for single and product moments of kth record values from exponential and Gumbel distributions, J. Appl. Statist. Sci. 7 (1998), 53-61.
[20] P. Pawlas and D. Szynal, Recurrence relations for single and product moments of kth record values from weibull distribution and a characterization, J. Appl. Statist. Sci. 10 (2000), 17-25.
[21] S.I. Resnick, Record values and related statistics, Ann. Probab. 2 (1973), 650-662.
[22] U. Kamps, Characterizations of distributions by recurrence relations and identities for moments of order statistics, in: N. Balakrishnan, and C.R. Rao, Handbook of Statistics 16 Order Statistics: Theory Methods, Alavi, Lick and Schwenk (Ed(s)), (North-Holland, Amsterdam, 1998), 291-311.
[23] W. Feller, An introduction to probability theory and its applications (John Wiley New York, 1966).
[24] Z. Grudzień and D. Szynal, Characterization of uniform and exponential distributions via moments of kth record values with random indices, J. Appl. Statist. Sci. 5 (1997), 259-266.