On non-existence of moment estimators of the GED power parameter
Discussiones Mathematicae. Probability and Statistics, Tome 36 (2016) no. 1-2, pp. 5-23.

Voir la notice de l'article provenant de la source Library of Science

We reconsider the problem of the power (also called shape) parameter estimation within symmetric, zero-mean, unit-variance one-parameter Generalized Error Distribution family. Focusing on moment estimators for the parameter in question, through extensive Monte Carlo simulations we analyze the probability of non-existence of moment estimators for small and moderate samples, depending on the shape parameter value and the sample size. We consider a nonparametric bootstrap approach and prove its consistency. However, despite its established asymptotics, bootstrap does not substantially improve the statistical inference based on moment estimators once they fall into the non-existence area in case of small and moderate sample sizes.
Keywords: Generalized Error Distribution, nonparametric bootstrap, bootstrap consistency, moment estimator, power parameter
@article{DMPS_2016_36_1-2_a0,
     author = {Stawiarski, Bartosz},
     title = {On non-existence of moment estimators of the {GED} power parameter},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {5--23},
     publisher = {mathdoc},
     volume = {36},
     number = {1-2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a0/}
}
TY  - JOUR
AU  - Stawiarski, Bartosz
TI  - On non-existence of moment estimators of the GED power parameter
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2016
SP  - 5
EP  - 23
VL  - 36
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a0/
LA  - en
ID  - DMPS_2016_36_1-2_a0
ER  - 
%0 Journal Article
%A Stawiarski, Bartosz
%T On non-existence of moment estimators of the GED power parameter
%J Discussiones Mathematicae. Probability and Statistics
%D 2016
%P 5-23
%V 36
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a0/
%G en
%F DMPS_2016_36_1-2_a0
Stawiarski, Bartosz. On non-existence of moment estimators of the GED power parameter. Discussiones Mathematicae. Probability and Statistics, Tome 36 (2016) no. 1-2, pp. 5-23. http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a0/

[1] A. Ayebo and T.J. Kozubowski, An asymmetric generalization of Gaussian and laplace laws, J. Probab. Statist. Sci. 1 (2) (2004), 187-210.

[2] A. Azzalini, Further results on a class of distributions which includes the normal ones, Statistica 46 (1986), 199-208.

[3] P.J. Bickel and D.A. Freedman, Some asymptotic theory for the bootstrap, Ann. Stat. 9 (6) (1981), 1196-1217.

[4] G.E. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis (Addison Wesley Ed., 1973).

[5] Y. Chen and N.C. Beaulieu, Novel low-complexity estimators for the shape parameter of the Generalized Gaussian Distribution, IEEE Transactions on Vehicular Technology 58 (4) (2009), 2067-2071.

[6] D. Coin, A method to estimate power parameter in exponential power distribution via polynomial regression, Banca D’Italia 834 (2011), working paper.

[7] C. Fernandez, J. Osiewalski and M.F.J. Steel, Modeling and inference with vdistributions, J. Amer. Statist. Association 90 (432) (1995), 1331-1340.

[8] G. González-Farías, J.A. Domnguez-Molina and R.M. Rodrguez-Dagnino, Efficiency of the approximated shape parameter estimator in the generalized Gaussian distribution, IEEE Transactions on Vehicular Technology 58 (8) (2009), 4214-4223.

[9] R. Krupiński and J. Purczyński, Approximated fast estimator for the shape parameter of Generalized Gaussian Distribution, Signal Processing 86 (2006), 205-211.

[10] G. Lunetta, Di una generalizzazione dello schema della curva normale, Annali della Facolta di Economia e Commercio di Palermo 17 (1963), 237-244.

[11] S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell. 11 (1989), 674-693.

[12] A.M. Mineo and M. Ruggieri, A software tool for the exponential power distribution: The normalp package, J. Statist. Software 12 (4) (2005), 1-24.

[13] S. Nadarajah, A generalized normal distribution, J. Appl. Stat. 32 (7) (2005), 685-694.

[14] J. Purczyński, Simplified method of GED distribution parameters estimation, Folia Oeconomica Stetinensia 10 (2) (2012), 35-49.

[15] K.-S. Song, A globally convergent and consistent method for estimating the shape parameter of a Generalized Gaussian Distribution, IEEE Transactions on Information Theory 52 (2) (2006), 510-527.

[16] M.T. Subbotin, On the law of frequency of errors, Matematicheskii Sbornik 31 (1923), 296-301.

[17] P.R. Tadikamalla, Random sampling from the exponential power distribution, J. Amer. Statist. Association 75 (1980), 683-686.

[18] Van der Vaart, Asymptotic Statistics (Cambridge University Press, 1998).

[19] M.K. Varanasi and B. Aazhang, Parametric generalized Gaussian density estimation, J. Acoustical Society of America 86 (4) (1989), 1404-1415.

[20] D. Zhu and V. Zinde-Walsh, Properties and estimation of asymmetric exponential power distribution, J. Econometrics 148 (2009), 86-99.