Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2015_35_1-2_a6, author = {Gen\c{c}, Ali}, title = {Moments of order statistics of the {Generalized} {T} {Distribution}}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {95--106}, publisher = {mathdoc}, volume = {35}, number = {1-2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a6/} }
TY - JOUR AU - Genç, Ali TI - Moments of order statistics of the Generalized T Distribution JO - Discussiones Mathematicae. Probability and Statistics PY - 2015 SP - 95 EP - 106 VL - 35 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a6/ LA - en ID - DMPS_2015_35_1-2_a6 ER -
Genç, Ali. Moments of order statistics of the Generalized T Distribution. Discussiones Mathematicae. Probability and Statistics, Tome 35 (2015) no. 1-2, pp. 95-106. http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a6/
[1] B.C. Arnold, N. Balakrishnan and H.N. Nagaraja, A First Course in Order Statistics (Wiley, New York, 1992).
[2] O. Arslan and A.İ. Genç, Robust location and scale estimation based on the univariate generalized t (GT) distribution, Commun. Stat.-Theor. Methods 32 (2003), 1505-1525.
[3] O. Arslan, Family of multivariate generalized t distributions, Journal of Multivariate Analysis 89 (2004), 329-337.
[4] S.T.B. Choy and J.S.K Chan, Scale mixtures distributions in statistical modelling, Aust. N.Z.J. Stat. 50 (2008), 135-146.
[5] H.A. David and H.N. Nagaraja, Order Statistics (Wiley, Hoboken, New Jersey, 2003).
[6] H. Exton, Multiple Hypergeometric Functions (Halstead, New York, 1976).
[7] H. Exton, Handbook of Hypergeometric Integrals: Theory Applications, Tables, Computer Programs (Halsted Press, New York, 1978).
[8] T. Fung and E. Seneta, Extending the multivariate generalised t and generalised VG distributions, Journal of Multivariate Analysis 101 (2010), 154-164.
[9] A.İ. Genç, The generalized T Birnbaum–-Saunders family, Statistics 47 (2013), 613-625.
[10] P.W. Karlsson, Reduction of certain generalized Kampé de Fériet functions, Math. Scand. 32 (1973), 265-268.
[11] J.B. McDonald and W.K. Newey, Partially adaptive estimation of regression models via the generalized t distribution, Econ. Theor. 4 (1988), 428-457.
[12] S. Nadarajah, Explicit expressions for moments of t order statistics, C.R. Acad. Sci. Paris, Ser. I. 345 (2007), 523-526.
[13] S. Nadarajah, On the generalized t (GT) distribution, Statistics 42 (2008a), 467-473.
[14] S. Nadarajah, Explicit expressions for moments of order statistics, Statistics and Probability Letters 78 (2008b), 196-205.
[15] B. Rosner, On the detection of many outliers, Technometrics 17 (1975), 221-227.
[16] D.C. Vaughan, The exact values of the expected values, variances and covariances of the order statistics from the Cauchy distribution, J. Statist. Comput. Simul. 49 (1994), 21-32.
[17] H.D. Vu, Iterative algorithms for data reconciliation estimator using generalized t-distribution noise model, Ind. Eng. Chem. Res. 53 (2014), 1478-1488.
[18] D. Wang and J.A. Romagnoli, Generalized t distribution and its applications to process data reconciliation and process monitoring, Transactions of the Institute of Measurement and Control 27 (2005), 367-390.
[19] J.J.J. Wang, S.T.B. Choy and J.S.K. Chan, Modelling stochastic volatility using generalized t distribution, Journal of Statistical Computation and Simulation 83 (2013), 340-354.
[20] W. Research, Inc.,Mathematica, Version 9.0 Champaign, IL (2012).