A note on correlation coefficient between random events
Discussiones Mathematicae. Probability and Statistics, Tome 35 (2015) no. 1-2, pp. 57-60.

Voir la notice de l'article provenant de la source Library of Science

Correlation coefficient is a well known measure of (linear) dependence between random variables. In his textbook published in 1980 L.T. Kubik introduced an analogue of such measure for random events A and B and studied its basic properties. We reveal that this measure reduces to the usual correlation coefficient between the indicator functions of A and B. In consequence the resuts by Kubik are obtained and strenghted directly. This is essential because the textbook is recommended by many universities in Poland.
Keywords: correlation coefficient between random events, correlation coefficient for random variables, synergy phenomenon
@article{DMPS_2015_35_1-2_a3,
     author = {St\k{e}pniak, Czes{\l}aw},
     title = {A note on correlation coefficient between random events},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {57--60},
     publisher = {mathdoc},
     volume = {35},
     number = {1-2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a3/}
}
TY  - JOUR
AU  - Stępniak, Czesław
TI  - A note on correlation coefficient between random events
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2015
SP  - 57
EP  - 60
VL  - 35
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a3/
LA  - en
ID  - DMPS_2015_35_1-2_a3
ER  - 
%0 Journal Article
%A Stępniak, Czesław
%T A note on correlation coefficient between random events
%J Discussiones Mathematicae. Probability and Statistics
%D 2015
%P 57-60
%V 35
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a3/
%G en
%F DMPS_2015_35_1-2_a3
Stępniak, Czesław. A note on correlation coefficient between random events. Discussiones Mathematicae. Probability and Statistics, Tome 35 (2015) no. 1-2, pp. 57-60. http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a3/

[1] P. Brémaud, An Introduction to Probabilistic Modeling (Springer-Verlag, New York, 1994).

[2] L.T. Kubik, Probability. A Textbook for Teaching Mathematics Studies (in Polish) 9Polish Scientific Publishers, Warsaw, 1980).

[3] K. Maciąg and C. Stępniak, Lack of synergy regression models, Comm. Statist. Theory Methods 43 (2014), 383-391.

[4] D. Stirzaker, Elementary Probability (Cambridge Univ. Press, Cambridge, 1994).