Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2014_34_1-2_a9, author = {Kitsos, Christos and Vassiliadis, Vassilios and Toulias, Thomas}, title = {MLE for the \ensuremath{\gamma}-order {Generalized} {Normal} {Distribution}}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {143--158}, publisher = {mathdoc}, volume = {34}, number = {1-2}, year = {2014}, zbl = {1326.60020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a9/} }
TY - JOUR AU - Kitsos, Christos AU - Vassiliadis, Vassilios AU - Toulias, Thomas TI - MLE for the γ-order Generalized Normal Distribution JO - Discussiones Mathematicae. Probability and Statistics PY - 2014 SP - 143 EP - 158 VL - 34 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a9/ LA - en ID - DMPS_2014_34_1-2_a9 ER -
%0 Journal Article %A Kitsos, Christos %A Vassiliadis, Vassilios %A Toulias, Thomas %T MLE for the γ-order Generalized Normal Distribution %J Discussiones Mathematicae. Probability and Statistics %D 2014 %P 143-158 %V 34 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a9/ %G en %F DMPS_2014_34_1-2_a9
Kitsos, Christos; Vassiliadis, Vassilios; Toulias, Thomas. MLE for the γ-order Generalized Normal Distribution. Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 143-158. http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a9/
[1] M. Abramovitz and I.A. Stegun, Handbook of Mathematical Functions (Washington, National Bureau of Standards, 1964).
[2] G. Agrò, Maximum likelihood estimation for the exponential power distribution, Comm. in Stat. - Simulation and Computation 24 (2) (1995) 523-536. doi: 10.1080/03610919508813255
[3] H. Alzer, On some inequalities for the incomplete gamma function, Mathematics of Computation 66 (228) (1997) 771-778. doi: 10.1090/S0025-5718-97-00814-4
[4] M. Chiodi, Sulle distribuzioni di campionamento delle stime di massima verosimiglianza dei parametri delle curve Normali di ordine p, Technical report, Istituto di Statistica, Facoltá di Economia e Commercio di Palermo 1988.
[5] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, 1994). doi: 10.1017/CBO9780511840371.
[6] J.R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics (New York, Wiley, 1998).
[7] A.M. Mineo, Un nuovo metodo di stima di p per una corretta valutazione dei parametri di intensitá e di scala di una curva Normale di ordine p, in: Atti della XXXVII Riunione Scientifica della SIS, San Remo (Ed(s)), (1994, 147-154.
[8] A.M. Mineo and M. Ruggieri, A software tool for the exponential power distribution: The normalp package, J. Stat. Software (2005) 1-24.
[9] T.P. Minka, Old and new matrix algebra useful for statistics, Notes 2000.
[10] S.R. Searle, Matrix Algebra Useful for Statistics (New York, Wiley, 1982).
[11] C.P. Kitsos and N.K. Tavoularis, Logarithmic Sobolev inequalities for information measures, IEEE Trans. Inform. Theory 55 (6) (2009) 2554-2561. doi: 10.1109/TIT.2009.2018179
[12] C.P. Kitsos, T.L. Toulias and C.P. Trandafir, On the multivariate γ-ordered normal distribution, Far East J. of Theoretical Statistics 38 (1) (2012) 49-73.
[13] G. Lunetta, Di alcune distribuzioni deducibili da una generalizzazione dello schema della curva Normale, Annali della Facoltá di Economia e Commercio di Palermo 20 (1966) 119-143.
[14] D.N. Naik and K. Plungpongpun, A Kotz-Type distribution for multivariate statistical inference, Statistics for Industry and Technology (2006) 111-124. doi: 10.1007/0-8176-4487-3_7.