A Bayesian significance test of change for correlated observations
Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 51-62.

Voir la notice de l'article provenant de la source Library of Science

This paper presents a Bayesian significance test for a change in mean when observations are not independent. Using a noninformative prior, a unconditional test based on the highest posterior density credible set is determined. From a Gibbs sampler simulation study the effect of correlation on the performance of the Bayesian significance test derived under the assumption of no correlation is examined. This paper is a generalization of earlier studies by KIM (1991) to not independent observations.
Keywords: autoregressive model, change point, HPD region sets, p-value, Gibbs sampler
@article{DMPS_2014_34_1-2_a3,
     author = {Slama, Abdeldjalil},
     title = {A {Bayesian} significance test of change for correlated observations},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {34},
     number = {1-2},
     year = {2014},
     zbl = {1326.62194},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a3/}
}
TY  - JOUR
AU  - Slama, Abdeldjalil
TI  - A Bayesian significance test of change for correlated observations
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2014
SP  - 51
EP  - 62
VL  - 34
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a3/
LA  - en
ID  - DMPS_2014_34_1-2_a3
ER  - 
%0 Journal Article
%A Slama, Abdeldjalil
%T A Bayesian significance test of change for correlated observations
%J Discussiones Mathematicae. Probability and Statistics
%D 2014
%P 51-62
%V 34
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a3/
%G en
%F DMPS_2014_34_1-2_a3
Slama, Abdeldjalil. A Bayesian significance test of change for correlated observations. Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 51-62. http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a3/

[1] M.M. Barbieri and C. Conigliani, Bayesian analysis of autoregressive time series with change points, J. Italian Stat. Soc. 7 (1998) 243-255. doi: 10.1007/BF03178933

[2] R.L. Brown, J. Durbin and J.M. Evans, Techniques for testing the constancy of regression relationships over time (with discussion), J.R. Statist. Soc. A 138 (1975) 149-63.

[3] H. Chernoff and S. Zacks, Estimating the current mean distribution which is subjected to change in time, Ann. Math. Statist. 35 (1964) 999-1018. doi: 10.1214/aoms/1177700517

[4] D. Ghorbanzadeh and R. Lounes, Bayesian analysis for detecting a change in exponential family, Appl. Math. Comp. 124 (2001) 1-15. doi: 10.1016/S0096-3003(00)00029-1

[5] H.-J. Kim, Change-point detection for correlated observations, Statistica Sinica 6 (1996) 275-287.

[6] A. Kander and S. Zacks, Test procedure for possible change in parameters of statistical distributions occuring at unknown time point, Ann. Math. Statist. 37 (1966) 1196-1210. doi: 10.1214/aoms/1177699265

[7] D. Kim, A Bayesian significance test of the stationarity of regression parametres, Biometrika 78 (1991) 667-675. doi: 10.2307/2337036

[8] D.V. Hinkley, Inference about the change-point in a sequence of random variables, Biometrika 57 (1970) 1-17. doi: 10.2307/2334932

[9] E.S. Page, Continuous inspection schemes, Biometrika 41 (1954) 100-115.

[10] E.S. Page, A test for change in a parameter occurring at an unknown point, Biometrika 42 (1955) 523-527. doi: 10.2307/2333009

[11] A. Sen and M.S. Srivastava, Some one-sided tests for change in level, Technometrics 17 (1975) 61-64. doi: 10.2307/1268001

[12] D. Siegmund, Boundary Crossing probabilities and statistical applications, Ann. Statist. 14 (1986) 361-404. doi: 10.1214/aos/1176349928

[13] D. Siegmund, Confidence sets in change point problem, Int. Statist. Rev. 56 (1988) 31-48. doi: 10.2307/1403360

[14] K.J. Worsley, The power of likelihood ratio and cumulative sum tests for a change in a binomial probability, Biometrika 70 (1983) 455-464. doi: 10.2307/2335560

[15] K.J. Worsley, Confidence regions and tests for a change-point in a sequence of exponential family random variables, Biometrika 73 (1986) 91-104. doi: 10.2307/2336275