Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2014_34_1-2_a12, author = {Grz\k{a}dziel, Mariusz}, title = {On maximum likelihood estimation in mixed normal models with two variance components}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {187--197}, publisher = {mathdoc}, volume = {34}, number = {1-2}, year = {2014}, zbl = {1326.62152}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a12/} }
TY - JOUR AU - Grządziel, Mariusz TI - On maximum likelihood estimation in mixed normal models with two variance components JO - Discussiones Mathematicae. Probability and Statistics PY - 2014 SP - 187 EP - 197 VL - 34 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a12/ LA - en ID - DMPS_2014_34_1-2_a12 ER -
%0 Journal Article %A Grządziel, Mariusz %T On maximum likelihood estimation in mixed normal models with two variance components %J Discussiones Mathematicae. Probability and Statistics %D 2014 %P 187-197 %V 34 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a12/ %G en %F DMPS_2014_34_1-2_a12
Grządziel, Mariusz. On maximum likelihood estimation in mixed normal models with two variance components. Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 187-197. http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a12/
[1] R. Christensen, Plane answers to complex questions: the theory of linear models, 4th Edition (Springer, New York, 2011). doi: 10.1007/978-1-4419-9816-3.
[2] E. Demidenko and H. Massam, On the existence of the maximum likelihood estimate in variance components models, Sankhyā A. Methods and Techniques 61 (1999) 431-443.
[3] S. Gnot, A. Michalski and A. Urbańska-Motyka, On some properties of ML and REML estimators in mixed normal models with two variance components, Discuss. Math. Prob. and Stat. 24 (2004) 109-126.
[4] S. Gnot, D. Stemann, G. Trenkler and A. Urbańska-Motyka, Maximum likelihood estimation in mixed normal models with two variance components, Statistics 36 (2002) 283-302. doi: 10.1080/02331880213197.
[5] G. Golub and C. Van Loan, Matrix Computations, 4th Edition (The John Hopkins University Press, Baltimore, 2013).
[6] E. Gross, M. Drton and S. Petrović, Maximum likelihood degree of variance components models, Electronic J. Stat. 6 (2012) 993-1016. doi: 10.1214/12-EJS702.
[7] M. Grządziel and A. Michalski, A note on the existence of maximum likelihood estimates in variance components models, accepted for publication in Discuss. Math. Prob. and Stat. 2014.
[8] J. Jiang, Linear and Generalized Linear Mixed Models and Their Applications (Springer, New York, 2007). doi: 10.1007/978-0-387-47946-0.
[9] A. Olsen, J. Seely and D. Birkes, Invariant quadratic estimation for two variance components, Ann. Stat. 4 (1976) 878-890. doi: 10.1214/aos/1176343586.
[10] C. R. Rao and J. Kleffe, Estimation of Variance Components and Applications (North Holland, New York, 1988). doi: 10.1002/bimj.4710320518.
[11] C. R. Rao and H. Toutenburg, Linear Models: Least Squares and Alternatives, 2nd Edition (Springer, New York, 1999).