Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2014_34_1-2_a11, author = {Szynal, Dominik and Wo{\l}y\'nski, Waldemar}, title = {On two families of tests for normality with empirical description of their performances}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {169--185}, publisher = {mathdoc}, volume = {34}, number = {1-2}, year = {2014}, zbl = {1326.62105}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a11/} }
TY - JOUR AU - Szynal, Dominik AU - Wołyński, Waldemar TI - On two families of tests for normality with empirical description of their performances JO - Discussiones Mathematicae. Probability and Statistics PY - 2014 SP - 169 EP - 185 VL - 34 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a11/ LA - en ID - DMPS_2014_34_1-2_a11 ER -
%0 Journal Article %A Szynal, Dominik %A Wołyński, Waldemar %T On two families of tests for normality with empirical description of their performances %J Discussiones Mathematicae. Probability and Statistics %D 2014 %P 169-185 %V 34 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a11/ %G en %F DMPS_2014_34_1-2_a11
Szynal, Dominik; Wołyński, Waldemar. On two families of tests for normality with empirical description of their performances. Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 169-185. http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a11/
[1] A. Cabaña and E.M. Cabaña, Tests of normality based on transformed empirical processes, Methodology and Computing in Applied Probability 5 (2003) 309-335. doi: 10.1023/A:1026235220018.
[2] M. Csörgő, V. Seshadri and M. Yalovsky, Some exact tests for normality in the presence of unknown parameters, Journal of the Royal Statistical Society. Series B 35 (1973) 507-522.
[3] R. D'Agostino and M. Stephens, Goodness-of-fit Techniques (Marcel Dekker, New York, 1986).
[4] W.C.M. Kallenberg and T. Ledwina, Data driven smooth tests for composite hypotheses: comparison of powers, J. Statist. Comput. Simul. 59 (1997) 101-121. doi: 10.1080/00949659708811850.
[5] M. Morris and D. Szynal, Goodness-of-fit tests based on characterizations involving moments of order statistics, I. J. Pure and Appl. Math. 38 (2007) 83-121.
[6] M. Morris and D. Szynal, Some U-statistics in goodness-of-fit tests derived from characterizations via record values, I. J. Pure and Appl. Math. 46 (2008) 507-582.
[7] E.S. Pearson, R.B. D'Agostino and K.O. Bowman, Tests for departure from normality: Comparison of powers, Biometrika 64 (1977) 231-246. doi: 10.2307/2335689.
[8] J.C. Rayner and D.J. Best, Smooth Tests of Goodness of Fit (Oxford University Press, New York, 1989).
[9] D. Szynal, Goodness-of-fit tests derived from characterizations of continuous distributions, Banach Center Publications 90 (2010) 203-223. doi: 10.4064/bc90-0-14.
[10] D. Szynal and W. Wołyński, Goodness-of-fit tests for exponentiality and Rayleigh distribution, I. J. Pure and Appl. Math. 78 (2012) 751-772.
[11] D. Szynal and W. Wołyński, Simulation supplement to goodness-of-fit tests derived from characterizations of continuous distributions via record values, I. J. Pure and Appl. Math. 87 (2013) 629-644.
[12] H.C. Thode, Jr., Testing for normality (Marcel Dekker, Inc. New York, 2002).