An extended problem to Bertrand's paradox
Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 23-34.

Voir la notice de l'article provenant de la source Library of Science

Bertrand's paradox is a longstanding problem within the classical interpretation of probability theory. The solutions 1/2, 1/3, and 1/4 were proposed using three different approaches to model the problem. In this article, an extended problem, of which Bertrand's paradox is a special case, is proposed and solved. For the special case, it is shown that the corresponding solution is 1/3. Moreover, the reasons of inconsistency are discussed and a proper modeling approach is determined by careful examination of the probability space.
Keywords: probability space, probability theory, problem modeling, random chords
@article{DMPS_2014_34_1-2_a1,
     author = {Ardakani, Mostafa and Wulff, Shaun},
     title = {An extended problem to {Bertrand's} paradox},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {34},
     number = {1-2},
     year = {2014},
     zbl = {1326.60009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a1/}
}
TY  - JOUR
AU  - Ardakani, Mostafa
AU  - Wulff, Shaun
TI  - An extended problem to Bertrand's paradox
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2014
SP  - 23
EP  - 34
VL  - 34
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a1/
LA  - en
ID  - DMPS_2014_34_1-2_a1
ER  - 
%0 Journal Article
%A Ardakani, Mostafa
%A Wulff, Shaun
%T An extended problem to Bertrand's paradox
%J Discussiones Mathematicae. Probability and Statistics
%D 2014
%P 23-34
%V 34
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a1/
%G en
%F DMPS_2014_34_1-2_a1
Ardakani, Mostafa; Wulff, Shaun. An extended problem to Bertrand's paradox. Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 23-34. http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a1/

[1] L. Basano and P. Ottonello, The ambiguity of random choices: probability paradoxes in some physical processes, Amer. J. Phys. 64 (1996) 34-39. doi: 10.1119/1.18289.

[2] J.L.F. Bertrand, Calcul des Probabilities (Gauthier-Villars, Paris, 1889).

[3] S.S. Chiu and R.C. Larson, Bertrand's paradox revisited: more lessons about that ambiguous word, random, Journal of Industrial and Systems Engineering 3 (2009) 1-26.

[4] M. Gardiner, Mathematical games: problems involving questions of probability and ambiguity, Scientific American 201 (1959) 174-182.

[5] J. Holbrook and S.S. Kim, Bertrand's paradox revisited, Mathematical Intelligencer 22 (2000) 16-19.

[6] E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, New York, 2003).

[7] E.T. Jaynes, Well-posed problem, Foundations of Physics 3 (1973) 477-493.

[8] L. Marinoff, A resolution of Bertrand's paradox, Philosophy of Science 61 (1994) 1-24. doi: 10.1086/289777.

[9] G.J. Szekely, Paradoxes in Probability Theory and Mathematical Statistics (Kluwer Academic Publishers, New York, 1986).