Signatura of magic and Latin integer squares: isentropic clans and indexing
Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 121-149

Voir la notice de l'article provenant de la source Library of Science

The 2010 study of the Shannon entropy of order nine Sudoku and Latin square matrices by Newton and DeSalvo [Proc. Roy. Soc. A 2010] is extended to natural magic and Latin squares up to order nine. We demonstrate that decimal and integer measures of the Singular Value sets, here named SV clans, are a powerful way of comparing different integer squares.
Keywords: Shannon entropy, magic square, Latin square, singular value decomposition, singular value clan
@article{DMPS_2013_33_1-2_a8,
     author = {Cameron, Ian and Rogers, Adam and Loly, Peter},
     title = {Signatura of magic and {Latin} integer squares: isentropic clans and indexing},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {121--149},
     publisher = {mathdoc},
     volume = {33},
     number = {1-2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2013_33_1-2_a8/}
}
TY  - JOUR
AU  - Cameron, Ian
AU  - Rogers, Adam
AU  - Loly, Peter
TI  - Signatura of magic and Latin integer squares: isentropic clans and indexing
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2013
SP  - 121
EP  - 149
VL  - 33
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2013_33_1-2_a8/
LA  - en
ID  - DMPS_2013_33_1-2_a8
ER  - 
%0 Journal Article
%A Cameron, Ian
%A Rogers, Adam
%A Loly, Peter
%T Signatura of magic and Latin integer squares: isentropic clans and indexing
%J Discussiones Mathematicae. Probability and Statistics
%D 2013
%P 121-149
%V 33
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2013_33_1-2_a8/
%G en
%F DMPS_2013_33_1-2_a8
Cameron, Ian; Rogers, Adam; Loly, Peter. Signatura of magic and Latin integer squares: isentropic clans and indexing. Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 121-149. http://geodesic.mathdoc.fr/item/DMPS_2013_33_1-2_a8/