Extremal (in)dependence of a maximum autoregressive process
Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 47-64
Voir la notice de l'article provenant de la source Library of Science
Maximum autoregressive processes like MARMA (Davis and Resnick, [5] 1989) or power MARMA (Ferreira and Canto e Castro, [12] 2008) have singular joint distributions, an unrealistic feature in most applications. To overcome this pitfall, absolute continuous versions were presented in Alpuim and Athayde [2] (1990) and Ferreira and Canto e Castro [14] (2010b), respectively. We consider an extended version of absolute continuous maximum autoregressive processes that accommodates both asymptotic tail dependence and independence. A full characterization of the bivariate lag-m tail dependence is presented. This will be useful in an adjustment procedure of the model to real data. An illustration with financial data is presented at the end.
Keywords:
extreme value theory, autoregressive processes, tail dependence, asymptotic tail independence
@article{DMPS_2013_33_1-2_a3,
author = {Ferreira, Marta},
title = {Extremal (in)dependence of a maximum autoregressive process},
journal = {Discussiones Mathematicae. Probability and Statistics},
pages = {47--64},
publisher = {mathdoc},
volume = {33},
number = {1-2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMPS_2013_33_1-2_a3/}
}
TY - JOUR AU - Ferreira, Marta TI - Extremal (in)dependence of a maximum autoregressive process JO - Discussiones Mathematicae. Probability and Statistics PY - 2013 SP - 47 EP - 64 VL - 33 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2013_33_1-2_a3/ LA - en ID - DMPS_2013_33_1-2_a3 ER -
Ferreira, Marta. Extremal (in)dependence of a maximum autoregressive process. Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 47-64. http://geodesic.mathdoc.fr/item/DMPS_2013_33_1-2_a3/