Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2012_32_1-2_a6, author = {Seijas-Mac{\'\i}as, Antonio and Oliveira, Am{\'\i}lcar}, title = {An {Approach} to {Distribution} of the {Product} of {Two} {Normal} {Variables}}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {87--99}, publisher = {mathdoc}, volume = {32}, number = {1-2}, year = {2012}, zbl = {1296.60032}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a6/} }
TY - JOUR AU - Seijas-Macías, Antonio AU - Oliveira, Amílcar TI - An Approach to Distribution of the Product of Two Normal Variables JO - Discussiones Mathematicae. Probability and Statistics PY - 2012 SP - 87 EP - 99 VL - 32 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a6/ LA - en ID - DMPS_2012_32_1-2_a6 ER -
%0 Journal Article %A Seijas-Macías, Antonio %A Oliveira, Amílcar %T An Approach to Distribution of the Product of Two Normal Variables %J Discussiones Mathematicae. Probability and Statistics %D 2012 %P 87-99 %V 32 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a6/ %G en %F DMPS_2012_32_1-2_a6
Seijas-Macías, Antonio; Oliveira, Amílcar. An Approach to Distribution of the Product of Two Normal Variables. Discussiones Mathematicae. Probability and Statistics, Tome 32 (2012) no. 1-2, pp. 87-99. http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a6/
[1] Cecil C. Craig, On the frequency function of xy, Annals of Mathematical Society 7 (1936) 1-15. doi: 10.1214/aoms/1177732541.
[2] L.A. Aroian, The probability function of a product of two normal distributed variables, Annals of Mathematical Statistics 18 (1947) 256-271. doi: 10.1214/aoms/1177730442.
[3] R. Ware and F. Lad, Approximating the Distribution for Sums of Product of Normal Variables. Research-Paper 2003-15. Department of Mathematics and Statistics (University of Canterbury - New Zealand, 2003).
[4] L.A. Aroian, V.S. Taneja and L.W. Cornwell, Mathematical forms of the distribution of the product of two normal variables, Communication in Statistics - Theory and Method 7 (1978) 164-172.
[5] J. Whisart and M.S.Bartlett, The distribution of second order moment statistics in a normal system, Proceedings of the Cambridge Philosophical Society XXVIII (1932) 455-459. doi: 10.1017/S0305004100010690.
[6] L.A. Aroian, V.S. Taneja and L.W. Cornwell, Mathematical forms of the distribution of the product of two normal variables, Communications in Statistics. Theoretical Methods A7 (2) (1978) 165-172. doi: 10.1080/03610927808827610.
[7] S.C. Chapra and R.P. Canale, Numerical Methods for Engineers (McGraw-Hill: New York, 2010).