An Approach to Distribution of the Product of Two Normal Variables
Discussiones Mathematicae. Probability and Statistics, Tome 32 (2012) no. 1-2, pp. 87-99.

Voir la notice de l'article provenant de la source Library of Science

The distribution of product of two normally distributed variables come from the first part of the XX Century. First works about this issue were [1] and [2] showed that under certain conditions the product could be considered as a normally distributed.
Keywords: product of normally distributed variables, inverse coefficient of variation, numerical integration, Monte Carlo simulation, combined ratio
@article{DMPS_2012_32_1-2_a6,
     author = {Seijas-Mac{\'\i}as, Antonio and Oliveira, Am{\'\i}lcar},
     title = {An {Approach} to {Distribution} of the {Product} of {Two} {Normal} {Variables}},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {87--99},
     publisher = {mathdoc},
     volume = {32},
     number = {1-2},
     year = {2012},
     zbl = {1296.60032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a6/}
}
TY  - JOUR
AU  - Seijas-Macías, Antonio
AU  - Oliveira, Amílcar
TI  - An Approach to Distribution of the Product of Two Normal Variables
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2012
SP  - 87
EP  - 99
VL  - 32
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a6/
LA  - en
ID  - DMPS_2012_32_1-2_a6
ER  - 
%0 Journal Article
%A Seijas-Macías, Antonio
%A Oliveira, Amílcar
%T An Approach to Distribution of the Product of Two Normal Variables
%J Discussiones Mathematicae. Probability and Statistics
%D 2012
%P 87-99
%V 32
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a6/
%G en
%F DMPS_2012_32_1-2_a6
Seijas-Macías, Antonio; Oliveira, Amílcar. An Approach to Distribution of the Product of Two Normal Variables. Discussiones Mathematicae. Probability and Statistics, Tome 32 (2012) no. 1-2, pp. 87-99. http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a6/

[1] Cecil C. Craig, On the frequency function of xy, Annals of Mathematical Society 7 (1936) 1-15. doi: 10.1214/aoms/1177732541.

[2] L.A. Aroian, The probability function of a product of two normal distributed variables, Annals of Mathematical Statistics 18 (1947) 256-271. doi: 10.1214/aoms/1177730442.

[3] R. Ware and F. Lad, Approximating the Distribution for Sums of Product of Normal Variables. Research-Paper 2003-15. Department of Mathematics and Statistics (University of Canterbury - New Zealand, 2003).

[4] L.A. Aroian, V.S. Taneja and L.W. Cornwell, Mathematical forms of the distribution of the product of two normal variables, Communication in Statistics - Theory and Method 7 (1978) 164-172.

[5] J. Whisart and M.S.Bartlett, The distribution of second order moment statistics in a normal system, Proceedings of the Cambridge Philosophical Society XXVIII (1932) 455-459. doi: 10.1017/S0305004100010690.

[6] L.A. Aroian, V.S. Taneja and L.W. Cornwell, Mathematical forms of the distribution of the product of two normal variables, Communications in Statistics. Theoretical Methods A7 (2) (1978) 165-172. doi: 10.1080/03610927808827610.

[7] S.C. Chapra and R.P. Canale, Numerical Methods for Engineers (McGraw-Hill: New York, 2010).