Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2012_32_1-2_a3, author = {Mota, Pedro}, title = {Normality assumption for the log-return of the stock prices}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {47--58}, publisher = {mathdoc}, volume = {32}, number = {1-2}, year = {2012}, zbl = {06248586}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a3/} }
TY - JOUR AU - Mota, Pedro TI - Normality assumption for the log-return of the stock prices JO - Discussiones Mathematicae. Probability and Statistics PY - 2012 SP - 47 EP - 58 VL - 32 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a3/ LA - en ID - DMPS_2012_32_1-2_a3 ER -
Mota, Pedro. Normality assumption for the log-return of the stock prices. Discussiones Mathematicae. Probability and Statistics, Tome 32 (2012) no. 1-2, pp. 47-58. http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a3/
[1] T.W. Anderson and D.A. Darling, Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes, Ann. Math. Statist. 23 (1952) 193-212. doi: 10.1214/aoms/1177729437
[2] T.W. Anderson and D.A. Darling, A test of goodness of fit, Journal of the American Statistical Association 49 (268) (1954) 765-769. doi: 10.1080/01621459.1954.10501232
[3] Z.W. Birnbaum, Numerical tabulation of the distribution of Kolmogorov's statistic for finite sample size, Journal of the American Statistical Association 47 (259) (1952) 425-441. doi: 10.1080/01621459.1952.10501182
[4] T. Bjork, Arbitrage Theory in Continuous Time (Oxford University Press, 1998). doi: 10.1093/0198775180.001.0001
[5] D.A. Darling, The Kolmogorov-Smirnov, Cramer-von Mises tests, Ann. Math. Statist. 28 (4) (1957) 823-838. doi: 10.1214/aoms/1177706788
[6] D.E.A. Giles, A saddlepoint approximation to the distribution function of the Anderson-Darling test statistic, Communications in Statistics - Simulation and Computation 30 (4) (2001) 899-905. doi: 10.1081/SAC-100107787
[7] H.L. Harter, Expected values of normal order statistics, Biometrika 48 (1-2) (1961) 151-165. doi: 10.1093/biomet/48.1-2.151
[8] I. Karatzas and Shreve, Brownian Motion and Stochastic Calculus (Springer-Verlag, 2000).
[9] P.A. Lewis, Distribution of the Anderson-Darling statistic, Ann. Math. Statist. 32 (4) (1961) 1118-1124. doi: 10.1214/aoms/1177704850
[10] H.W. Lilliefors, On the Kolmogorov-Smirnov test for normality with mean and variance unknown, Journal of the American Statistical Association 62 (318) (1967) 399-402. doi: 10.1080/01621459.1967.10482916
[11] F.J. Massey, The Kolmogorov-Smirnov test for goodness of fit, Journal of the American Statistical Association 46 (253) (1951) 68-78. doi: 10.1080/01621459.1951.10500769
[12] B. Oksendall, Stochastic Differential Equations (Springer-Verlag, 1998). doi: 10.1007/978-3-662-03620-4
[13] J.P. Royston, An extension of Shapiro and Wilk's W test for normality to large samples, Journal of the Royal Statistical Society. Series C (Applied Statistics) 31 (1982) 115-124.
[14] J.P. Royston, A simple method for evaluating the Shapiro-Francia W' test of non-normality, Journal of the Royal Statistical Society. Series D (The Statistician) 32 (1983) 287-300. doi: 10.2307/2987935
[15] K. Sarkadi, The consistency of the Shapiro-Francia test, Biometrika 62 (2) (1975) 445-450.
[16] S.S. Shapiro and R.S. Francia, An approximate analysis of variance test for normality, Journal of the American Statistical Association 67 (1972) 215-216. doi: 10.1080/01621459.1972.10481232
[17] S.S. Shapiro and M. Wilk, An analysis of variance test for normality (Complete Samples), Biometrika 52 (1965) 591-611.
[18] M.A. Stephens, Use of the Kolmogorov-Smirnov, Cramer-Von Mises and related statistics without extensive tables, Journal of the Royal Statistical Society. Series B (Methodological) 32 (1) (1970) 115-122.
[19] M.A. Stephens, EDF statistics for goodness of fit and some comparisons, Journal of the American Statistical Association 69 (347) (1974) 730-737. doi: 10.1080/01621459.1974.10480196
[20] M.A. Stephens, Asymptotic results for goodness-of-fit statistics with unknown parameters, Annals of Statistics 4 (2) (1976) 357-369. doi: 10.1214/aos/1176343411
[21] M.A. Stephens, Goodness of Fit with Special Reference to Tests for Exponentiality, Technical Report No. 262 (Department of Statistics, Stanford University, Stanford, CA, 1977).