Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2010_30_2_a2, author = {Bednarski, Tadeusz and Clarke, Brenton and Schubert, Daniel}, title = {Adaptive trimmed likelihood estimation in regression}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {203--219}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, zbl = {1272.62027}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a2/} }
TY - JOUR AU - Bednarski, Tadeusz AU - Clarke, Brenton AU - Schubert, Daniel TI - Adaptive trimmed likelihood estimation in regression JO - Discussiones Mathematicae. Probability and Statistics PY - 2010 SP - 203 EP - 219 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a2/ LA - en ID - DMPS_2010_30_2_a2 ER -
%0 Journal Article %A Bednarski, Tadeusz %A Clarke, Brenton %A Schubert, Daniel %T Adaptive trimmed likelihood estimation in regression %J Discussiones Mathematicae. Probability and Statistics %D 2010 %P 203-219 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a2/ %G en %F DMPS_2010_30_2_a2
Bednarski, Tadeusz; Clarke, Brenton; Schubert, Daniel. Adaptive trimmed likelihood estimation in regression. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 2, pp. 203-219. http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a2/
[1] T. Bednarski and B.R. Clarke, Trimmed likelihood estimation of location and scale of the normal distribution, Austral. J. Statist. 35 (1993), 141-153.
[2] T. Bednarski and B.R. Clarke, Asymptotics for an adaptive trimmed likelihood location estimator, Statistics 36 (2002), 1-8.
[3] P. Billingsley, Convergence of Probability Measures. New York: John Wiley 1968.
[4] R.W. Butler, Nonparametric interval and point prediction using data trimmed by a Grubbs-type outlier rule, Ann. Statist. 10 (1982), 197-204
[5] B.R. Clarke, Empirical evidence for adaptive confidence intervals and identification of outliers using methods of trimming, Austral. J. Statist. 36 (1994), 45-58.
[6] B.R. Clarke, An adaptive method of estimation and outlier detection in regression applicable for small to moderate sample sizes, Discussiones Mathematicae, Probability and Statistics 20 (2000), 25-50.
[7] Y. Dodge and J. Jurečková, Adaptive combination of least squares and least absolute deviation estimators, in: Statistical Data Analysis Based on the L₁-Norm and Related Methods ed. Y. Dodge, North Holland, Elsevier Science Publishers 1987.
[8] Y. Dodge and J. Jurečková, Adaptive choice of trimming proportion in trimmed least-squares estimation, Statistics Probability Letters 33 (1997), 167-176.
[9] Y. Dodge and J. Jurečková, Adaptive Regression, New York, Springer-Verlag 2000.
[10] D. Gamble, The Analysis of Contaminated Tidal Data, PhD Thesis, Murdoch University, Western Australia 1999.
[11] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel, Robust Statistics: The Approach Based on Influence Functions, New York, Wiley 1986.
[12] P.J. Huber, The behaviour of maximum likelihood estimates under nonstandard conditions, Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability 1 (1967), 73-101.
[13] P.J. Huber, Robust Statistical Procedures, 2nd ed., CBMS-NSF, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia 1996.
[14] L.A. Jaeckel, Some flexible estimates of location, Ann. Math. Statist. 42 (1971), 1540-1552.
[15] J. Jurečková, R. Koenker and A.H. Welsh, Adaptive choice of trimming proportions, Ann. Inst. Statist. Math., 46 (1994), 737-755.
[16] N.M. Neykov and C.H. Müller, Breakdown point and computation of trimmed likelihood estimators in generalized linear models, Developments in robust statistics (Vorau 2001), Heidelberg, Physica 2003.
[17] C.H. Müller and N. Neykov, Breakdown points of trimmed likelihood estimators and related estimators in generalized linear models, J. Statist. Plann. Inference 116 (2004), 503-519.
[18] P.J. Rousseeuw, Multivariate estimation with high breakdown point, pp. 283-297 in: Mathematical Statistics and Applications. Vol.B, (1985), eds. Grossman, Pflug, Vincze and Wertz, Dordrecht:Reidel Publishing Co 1983.
[19] P.J. Rousseeuw, Least Median of Squares Regression, Journal of the American Statistical Association 79 (1984), 871-880.
[20] P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outlier Detection. New York, Wiley 1987.
[21] D.L. Vandev and N.M. Neykov, Robust maximum likelihood in the Gaussian case, p. 259-264 in: New Directions in Data Analysis and Robustness, Morgenthaler, S., Ronchetti, E. and Stahel, W.A. (eds.), Birkhäuser Verlag, Basel 1993.