Some methods of constructing kernels in statistical learning
Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 2, pp. 179-201.

Voir la notice de l'article provenant de la source Library of Science

This paper is a collection of numerous methods and results concerning a design of kernel functions. It gives a short overview of methods of building kernels in metric spaces, especially R^n and S^n. However we also present a new theory. Introducing kernels was motivated by searching for non-linear patterns by using linear functions in a feature space created using a non-linear feature map.
Keywords: positive definite kernel, dot product kernel, statistical kernel, SVM, kPCA
@article{DMPS_2010_30_2_a1,
     author = {G\'orecki, Tomasz and {\L}uczak, Maciej},
     title = {Some methods of constructing kernels in statistical learning},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {179--201},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     zbl = {1272.62049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a1/}
}
TY  - JOUR
AU  - Górecki, Tomasz
AU  - Łuczak, Maciej
TI  - Some methods of constructing kernels in statistical learning
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2010
SP  - 179
EP  - 201
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a1/
LA  - en
ID  - DMPS_2010_30_2_a1
ER  - 
%0 Journal Article
%A Górecki, Tomasz
%A Łuczak, Maciej
%T Some methods of constructing kernels in statistical learning
%J Discussiones Mathematicae. Probability and Statistics
%D 2010
%P 179-201
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a1/
%G en
%F DMPS_2010_30_2_a1
Górecki, Tomasz; Łuczak, Maciej. Some methods of constructing kernels in statistical learning. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 2, pp. 179-201. http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a1/

[1] M. Abramowitz and I.A. Stegun, Chs. Legendre functions and orthogonal polynomials in Handbook of mathematical functions, Dover Publications, New York 1972.

[2] B.E. Boser, I.M. Guyon and V.N. Guyon, A training algorithm for optimal margin classifiers, in D. Haussler, eds. 5th Annual ACM Workshop on COLT. ACM Press, Pittsburgh (1992), 144-152.

[3] C.J.C. Burges, Geometry and invariance in kernel based methods in: Schölkopf, B. Burges, C.J.C. Smola, A.J. eds. Advances in kernel methods - support vector learning. MIT Press, Cambridge (1999), 89-116.

[4] C. Cortes and V. Vapnik, Support-Vector Networks, Machine Learning 20 (1995), 273-297.

[5] R. Herbrich, Learning Kernel Classifiers, MIT Press, London 2002.

[6] T. Hofmann, B. Schölkopf and A.J. Smola, Kernels methods in machine learning, Annals of Statistics 36 (2008), 1171-1220.

[7] Z. Ovari, Kernels, eigenvalues and support vector machines, Honours thesis, Australian National University, Canberra 2000.

[8] B. Schölkopf and A.J. Smola, Learning with Kernels, MIT Press, London 2002.

[9] B. Schölkopf, A.J. Smola and K.R. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation 10 (1998), 1299-1319.

[10] I.J. Schoenberg, Positive definite functions on spheres, Duke Mathematical Journal 9 (1942), 96-108.

[11] A. Tarantola, Inverse problem theory and methods for model paramenter estimation, SIAM, Philadelphia 2005.

[12] M. Zu, Kernels and ensembles: perspective on statistical learning, American Statistician 62 (2008), 97-109.