Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2010_30_2_a1, author = {G\'orecki, Tomasz and {\L}uczak, Maciej}, title = {Some methods of constructing kernels in statistical learning}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {179--201}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, zbl = {1272.62049}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a1/} }
TY - JOUR AU - Górecki, Tomasz AU - Łuczak, Maciej TI - Some methods of constructing kernels in statistical learning JO - Discussiones Mathematicae. Probability and Statistics PY - 2010 SP - 179 EP - 201 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a1/ LA - en ID - DMPS_2010_30_2_a1 ER -
Górecki, Tomasz; Łuczak, Maciej. Some methods of constructing kernels in statistical learning. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 2, pp. 179-201. http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a1/
[1] M. Abramowitz and I.A. Stegun, Chs. Legendre functions and orthogonal polynomials in Handbook of mathematical functions, Dover Publications, New York 1972.
[2] B.E. Boser, I.M. Guyon and V.N. Guyon, A training algorithm for optimal margin classifiers, in D. Haussler, eds. 5th Annual ACM Workshop on COLT. ACM Press, Pittsburgh (1992), 144-152.
[3] C.J.C. Burges, Geometry and invariance in kernel based methods in: Schölkopf, B. Burges, C.J.C. Smola, A.J. eds. Advances in kernel methods - support vector learning. MIT Press, Cambridge (1999), 89-116.
[4] C. Cortes and V. Vapnik, Support-Vector Networks, Machine Learning 20 (1995), 273-297.
[5] R. Herbrich, Learning Kernel Classifiers, MIT Press, London 2002.
[6] T. Hofmann, B. Schölkopf and A.J. Smola, Kernels methods in machine learning, Annals of Statistics 36 (2008), 1171-1220.
[7] Z. Ovari, Kernels, eigenvalues and support vector machines, Honours thesis, Australian National University, Canberra 2000.
[8] B. Schölkopf and A.J. Smola, Learning with Kernels, MIT Press, London 2002.
[9] B. Schölkopf, A.J. Smola and K.R. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation 10 (1998), 1299-1319.
[10] I.J. Schoenberg, Positive definite functions on spheres, Duke Mathematical Journal 9 (1942), 96-108.
[11] A. Tarantola, Inverse problem theory and methods for model paramenter estimation, SIAM, Philadelphia 2005.
[12] M. Zu, Kernels and ensembles: perspective on statistical learning, American Statistician 62 (2008), 97-109.