Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion
Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 1, pp. 117-122
Cet article a éte moissonné depuis la source Library of Science
When a diffusion is ergodic its transition density converges to its invariant density, see Durrett (1998). This convergence enabled us to introduce a sample partitioning technique that gives in each sub-sample, maximum likelihood estimators. The averages of these being a natural choice as estimators. To compare our estimators with the optimal we obtained from martingale estimating functions, see Sørensen (1998), we used the Ornstein-Uhlenbeck process for which exact simulations can be carried out.
Keywords:
ergodic diffusions, martingale estimating functions, transition and invariant densities, maximum likelihood estimators
@article{DMPS_2010_30_1_a6,
author = {Ramos, Lu{\'\i}s},
title = {Sample partitioning estimation for ergodic diffusions: application to {Ornstein-Uhlenbeck} diffusion},
journal = {Discussiones Mathematicae. Probability and Statistics},
pages = {117--122},
year = {2010},
volume = {30},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a6/}
}
TY - JOUR AU - Ramos, Luís TI - Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion JO - Discussiones Mathematicae. Probability and Statistics PY - 2010 SP - 117 EP - 122 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a6/ LA - en ID - DMPS_2010_30_1_a6 ER -
%0 Journal Article %A Ramos, Luís %T Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion %J Discussiones Mathematicae. Probability and Statistics %D 2010 %P 117-122 %V 30 %N 1 %U http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a6/ %G en %F DMPS_2010_30_1_a6
Ramos, Luís. Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 1, pp. 117-122. http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a6/
[1] B.M. Bibby and M. Sørensen, Martingale estimation functions for discretely observed diffusion processes, Bernoulli 1 (1995), 17-39.
[2] U. Küchler and M. Sørensen, Exponential Families of Stochastic Processes, Springer-Verlag 1997.
[3] S. Iacus, Simulation and Inference for Stochastic Differential, Equations with R Examples, Springer 2008.
[4] J.T. Mexia and G.C. Dias, Statistical Inference for Discretely Observed Diffusions of Diffusions, VII-Congresso da SPE, 14-16 Outubro, Osir 1999.
[5] B. Øksendal, Stochastic Differential Equations, An Introduction, Fifth Edition, Springer-Verlag 1998.
[6] M. Sørensen, Lecture Notes on 'Statistical Inference for Discretely Observed Diffusions', Berlin Graduiertenkolleg 1998.