Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion
Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 1, pp. 117-122

Voir la notice de l'article provenant de la source Library of Science

When a diffusion is ergodic its transition density converges to its invariant density, see Durrett (1998). This convergence enabled us to introduce a sample partitioning technique that gives in each sub-sample, maximum likelihood estimators. The averages of these being a natural choice as estimators. To compare our estimators with the optimal we obtained from martingale estimating functions, see Sørensen (1998), we used the Ornstein-Uhlenbeck process for which exact simulations can be carried out.
Keywords: ergodic diffusions, martingale estimating functions, transition and invariant densities, maximum likelihood estimators
@article{DMPS_2010_30_1_a6,
     author = {Ramos, Lu{\'\i}s},
     title = {Sample partitioning estimation for ergodic diffusions: application to {Ornstein-Uhlenbeck} diffusion},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {117--122},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a6/}
}
TY  - JOUR
AU  - Ramos, Luís
TI  - Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2010
SP  - 117
EP  - 122
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a6/
LA  - en
ID  - DMPS_2010_30_1_a6
ER  - 
%0 Journal Article
%A Ramos, Luís
%T Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion
%J Discussiones Mathematicae. Probability and Statistics
%D 2010
%P 117-122
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a6/
%G en
%F DMPS_2010_30_1_a6
Ramos, Luís. Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 1, pp. 117-122. http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a6/