Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2010_30_1_a3, author = {Grilo, Lu{\'\i}s and Coelho, Carlos}, title = {Near-exact distributions for the generalized {Wilks} {Lambda} statistic}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {53--86}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, zbl = {1208.62022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a3/} }
TY - JOUR AU - Grilo, Luís AU - Coelho, Carlos TI - Near-exact distributions for the generalized Wilks Lambda statistic JO - Discussiones Mathematicae. Probability and Statistics PY - 2010 SP - 53 EP - 86 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a3/ LA - en ID - DMPS_2010_30_1_a3 ER -
Grilo, Luís; Coelho, Carlos. Near-exact distributions for the generalized Wilks Lambda statistic. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 1, pp. 53-86. http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a3/
[1] M.Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, (eds.), 9-th printing, Dover, New York 1974.
[2] T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 3.rd ed., J. Wiley Sons, New York 2003.
[3] G.E.P. Box, A general distribution theory for a class of likelihood criteria, Biometrika 36 (1949), 317-346.
[4] C.A. Coelho, The generalized integer Gamma distribution - a basis for distributions in Multivariate Statistics, Journal of Multivariate Analysis 64 (1998), 86-102.
[5] C.A. Coelho, A generalized Integer Gamma distribution as an asymptotic replacement for a Logbeta distribution applications, American Journal of Mathematical Management Sciences 23 (2003), 383-399.
[6] C.A. Coelho, The generalized near-integer Gamma distribution: a basis for 'near-exact' approximations to the distribution of statistics which are the product of an odd number of independent Beta random variables, Journal of Multivariate Analysis 89 (2004), 191-218.
[7] L.M. Grilo, Development of near-exact distributions for different scenarios of application of the Wilks Lambda statistic (in Portuguese), Ph.D. thesis, Technical University of Lisbon, Portugal 2005.
[8] L.M. Grilo and C.A. Coelho, Development and Comparative Study of two Near-exact Approximations to the Distribution of the Product of an Odd Number of Independent Beta Random Variables, Journal of Statistical Planning and Inference 137 (2007), 1560-1575.
[9] L.M. Grilo and C.A. Coelho, The exact and near-exact distribution for the Wilks Lambda statistic used in the test of independence of two sets of variables, American Journal of Mathematical and Management Sciences (2010), (in print).
[10] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, vol. 2, J. Wiley Sons, New York 1995.
[11] S.S. Wilks, Certain generalizations in the analysis of variance, Biometrika 24 (1932), 471-494.
[12] S.S. Wilks, On the independence of k sets of normally distributed statistical variables, Econometrika 3 (1935), 309-326.