Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2010_30_1_a1, author = {Gomes, D. and Neves, Maria}, title = {Extremal behaviour of stationary processes: the calibration technique in the extremal index estimation}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {21--33}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, zbl = {1208.62085}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a1/} }
TY - JOUR AU - Gomes, D. AU - Neves, Maria TI - Extremal behaviour of stationary processes: the calibration technique in the extremal index estimation JO - Discussiones Mathematicae. Probability and Statistics PY - 2010 SP - 21 EP - 33 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a1/ LA - en ID - DMPS_2010_30_1_a1 ER -
%0 Journal Article %A Gomes, D. %A Neves, Maria %T Extremal behaviour of stationary processes: the calibration technique in the extremal index estimation %J Discussiones Mathematicae. Probability and Statistics %D 2010 %P 21-33 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a1/ %G en %F DMPS_2010_30_1_a1
Gomes, D.; Neves, Maria. Extremal behaviour of stationary processes: the calibration technique in the extremal index estimation. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 1, pp. 21-33. http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a1/
[1] F. Andrews, Calibration and statistical inference, J. Ann. Statist. Assoc. 65 (1970), 1233-1242.
[2] S.G. Coles, J.A. Tawn and R.L. Smith, A sazonal Markov model for extremely low temperatures, Environmetrics 5 (1994), 221-339.
[3] P. Deheuvels, Point processes and multivariate extreme values, J. of multivariate analysis 13 (1983), 257-272.
[4] M.I. Gomes, Statistical inference in an extremal markovian model, COMPSTAT (1990), 257-262.
[5] M.I. Gomes, Modelos extremais em esquemas de dependência, I Congresso Ibero-Americano de Esdadistica e Investigacion Operativa (1992), 209-220.
[6] M.I. Gomes, On the estimation of parameters of rare events in environmental time series, Statistics for the Environment (1993), 226-241.
[7] T. Hsing, Extremal index estimation for weakly dependent stationary sequence, Ann. Statist 21 (1993), 2043-2071.
[8] M.R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and related properties of random sequences and series, Springer Verlag. New York 1983.
[9] S. Nandagopalan, Multivariate Extremes and Estimation of the Extremal Index, Ph.D. Thesis. Techn. Report 315, Center for Stochastic Processes, Univ. North-Caroline 1990.
[10] D. Prata Gomes, Métodos computacionais na estimação pontual e intervalar do índice extremal. Tese de Doutoramento, Universidade Nova de Lisboa, Faculdade de Cięncias e Tecnologia 2008.
[11] H. Scheffé, A statistical theory of calibration, Ann. Statist 1 (1973), 1-37.
[12] R. Smith and I. Weissman, Estimating the extremal index, J. R. Statist. Soc. B, 56 (1994), 515-528.
[13] I. Weissman and S. Novak, On blocks and runs estimators of the extremal index, J. Statist. Plann. Inf. 66 (1998), 281-288.
[14] E.J. Williams, Regression methods in calibration problems, Proc. 37th Session, Bull. Int. Statist. Inst. 43 (1) (1969), 17-28.