Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2009_29_2_a6, author = {Pestana, Dinis and Aleixo, Sandra and Leonel Rocha, J.}, title = {The {Beta(p,1)} extensions of the random (uniform) {Cantor} sets}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {199--221}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, zbl = {1214.28004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a6/} }
TY - JOUR AU - Pestana, Dinis AU - Aleixo, Sandra AU - Leonel Rocha, J. TI - The Beta(p,1) extensions of the random (uniform) Cantor sets JO - Discussiones Mathematicae. Probability and Statistics PY - 2009 SP - 199 EP - 221 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a6/ LA - en ID - DMPS_2009_29_2_a6 ER -
%0 Journal Article %A Pestana, Dinis %A Aleixo, Sandra %A Leonel Rocha, J. %T The Beta(p,1) extensions of the random (uniform) Cantor sets %J Discussiones Mathematicae. Probability and Statistics %D 2009 %P 199-221 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a6/ %G en %F DMPS_2009_29_2_a6
Pestana, Dinis; Aleixo, Sandra; Leonel Rocha, J. The Beta(p,1) extensions of the random (uniform) Cantor sets. Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 2, pp. 199-221. http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a6/
[1] S.M. Aleixo, Analytical Methods in Probability and Probabilistic Methods in Analysis: Fractality Arising in Connection to Beta(p,q) Models, Population Dynamics and Hausdorff Dimension, Ph. D. thesis, Univ. Lisbon, (2008).
[2] S.M. Aleixo, J.L. Rocha and D.D. Pestana, Populational Growth Models in the Light of Symbolic Dynamics, Proceedings of the ITI 2008, 30th International Conference on Information Technology Interfaces, Cavtat/Dubrovnik, Croatia (2008), IEEE:10.1109/ITI.2008.4588428, 311-316.
[3] S.M. Aleixo, J.L. Rocha and D.D. Pestana, Populational Growth Models Proportional to Beta Densities with Allee Effect, Proceedings of the BVP 2008, International Conference on Boundary Value Problems: Mathematical Models in Engineering, Biology and Medicine, Spain, American Institute of Physics 1124 (2009), 3-12.
[4] S.M. Aleixo, J.L. Rocha and D.D. Pestana, Probabilistic Methods in Dynamical Analysis: Populations Growths Associated to Models Beta(p,q) with Allee Effect, Proceedings of the DYNA08, International Conference on Dynamics and Applications 2008, Braga, Portugal (2008), in press.
[5] S.M. Aleixo, J.L. Rocha and D.D. Pestana, Dynamical Behaviour on the Parameter Space: New Populational Growth Models Proportional to Beta Densities, Proceedings of the ITI 2009, 31th International Conference on Information Technology Interfaces, Cavtat/Dubrovnik, Croatia (2009), IEEE:10.1109/ITI.2009.5196082, 213-218.
[6] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, John Wiley and Sons, New York 1990.
[7] Y. Pesin and H. Weiss, On the Dimension of the Deterministic and Random Cantor-Like Sets, Math. Res. Lett. 1 (1994), 519-529.
[8] D.D. Pestana, S.M. Aleixo and J.L. Rocha, Hausdorff Dimension of the Random Middle Third Cantor Set, Proceedings of the ITI 2009, 31th International Conference o n Information Technology Interfaces, Cavtat/Dubrovnik, Croatia (2009), IEEE:10.1109/ITI.2009.5196094, 279-284.
[9] J.L. Rocha and J.S. Ramos, Weighted Kneading Theory of One-Dimensional Maps with a Hole, Int. J. Math. Math. Sci. 38 (2004), 2019-2038.
[10] M. Schroeder, Fractals, Chaos, Power Laws: Minutes from a Infinite Paradise, W.H. Freeman, New York 1991.
[11] P. Waliszewski and J. Konarski, A Mystery of the Gompertz Function, Fractals in Biology and Medicine IV (2005), 277-286.