Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2009_29_2_a2, author = {Esqu{\'\i}vel, Manuel}, title = {Some applications of probability generating function based methods to statistical estimation}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {131--153}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, zbl = {1208.62028}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a2/} }
TY - JOUR AU - Esquível, Manuel TI - Some applications of probability generating function based methods to statistical estimation JO - Discussiones Mathematicae. Probability and Statistics PY - 2009 SP - 131 EP - 153 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a2/ LA - en ID - DMPS_2009_29_2_a2 ER -
%0 Journal Article %A Esquível, Manuel %T Some applications of probability generating function based methods to statistical estimation %J Discussiones Mathematicae. Probability and Statistics %D 2009 %P 131-153 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a2/ %G en %F DMPS_2009_29_2_a2
Esquível, Manuel. Some applications of probability generating function based methods to statistical estimation. Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 2, pp. 131-153. http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a2/
[1] D. Dacunha-Castelle and M. Duflo, Probabilités et Statistiques, Tome 2, Problèmes à temps mobile, Masson, Paris 1983.
[2] M.M. Dowling and M. Nakamura, Estimating parameters for discrete distributions via the empirical probability generating function, Commun. Stat., Simulation Comput 26 (1) (1997), 301-313.
[3] M.L. Esquível, Probability generating functions for discrete real-valued random variables, Teor. Veroyatn. Primen. 52 (1) (2007), 129-149; translation in Theory Probab. Appl. 52 (1) (2008), 40-57.
[4] M.L. Esquível, Aplicações das funções geradoras de probabilidade a variáveis aleatórias reais, Proceedings of the XII Annual Congress Portuguese Statistical Society, Editors Carlos Braumann, Paulo Infante, Manuela Oliveira, Russell Alpizar Jara e Fernando Rosado (2005), 235-246.
[5] A. Feuerverger, On the empirical saddlepoint approximation, Biometrika 76 (3) (1989), 457-464.
[6] A. Feuerverger and P. McDunnough, On statistical transform methods and their efficiency, The Can. J. of Stat. 12 (4) (1984), 303-317.
[7] P. Gaenssler, Empirical Processes, Lecture Notes-Monograph Series, volume 3, Institute of Mathematical Statistics, Hayward, CA 1983.
[8] S. Kocherlakota and K. Kocherlakota, Goodness of fit tests for discrete distributions, Commun. Statist.-Theor. Meth. 15 (3) (1986), 815-829.
[9] P. Malliavin, Integration and Probability, Springer Verlag 1995.
[10] M.S. Marques and V. Pérez-Abreu, Law of large numbers and central limit theorem for the empirical probability generating function of stationary random sequences and processes, Aportaciones Mat., Notas Invest. 4 (2) (1989), 100-109.
[11] M. Nakamura and V. Pérez-Abreu, Empirical probability generating function. An overview, Insur. Math. Econ. 12 (3) (1993), 349-366.
[12] M. Nakamura and V. Pérez-Abreu, Exploratory data analysis for counts using the empirical probability generating function, Commun. Stat., Theory Methods 22 (3) (1993), 827-842.
[13] M. Nakamura and V. Pérez-Abreu, Use of an empirical probability generating function for testing a Poisson model, Can. J. Stat. 21 (2) (1993), 149-156.
[14] W.R. Pestman, Mathematical Statistics, Walter de Gruyter, Paris, New York 1998.
[15] B.L.S. Prakasa Rao, Statistical Inference for Diffusion Type Processes, Arnold Hodder Headline Group 1999.
[16] B. Rémillard and R. Theodorescu, Inference based on the empirical probability generating function for mixtures of Poisson distributions, Stat. Decis. 18 (4) (2000), 349-366.
[17] R. Rueda and F. O'Reilly, Tests of fit for discrete distributions based on the probability generating function, Commun. Stat., Simulation Comput. 28 (1) (1999), 259-274.
[18] R. Rueda, V. Pérez-Abreu and F. O'Reilly, Goodness of fit for the Poisson distribution based on the probability generating function, Commun. Stat., Theory Methods 20 (10) (1991), 3093-3110.