Statistical analysis of diabetes mellitus
Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 1, pp. 69-90
This paper deals with an application of regression analysis to the regulation of the blood-sugar under diabetes mellitus. Section 2 gives a description of Gram-Schmidt orthogonalization, while Section 3 discusses the difference between Gauss-Markov estimation and Least Squares Estimation. Section 4 is devoted to the statistical analysis of the blood-sugar during the night. The response change of blood-sugar is explained by three variables: time, food and physical activity ("Bewegung"). At the beginning of the section it is shown that the proposed method was very successful in 2007.
Keywords:
Gram-Schmidt orthogonalization, regression model, Gauss-Markov theorem, least squares, diabetes mellitus, glucosis, antidiabetica
@article{DMPS_2009_29_1_a4,
author = {Drygas, Hilmar},
title = {Statistical analysis of diabetes mellitus},
journal = {Discussiones Mathematicae. Probability and Statistics},
pages = {69--90},
year = {2009},
volume = {29},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMPS_2009_29_1_a4/}
}
Drygas, Hilmar. Statistical analysis of diabetes mellitus. Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 1, pp. 69-90. http://geodesic.mathdoc.fr/item/DMPS_2009_29_1_a4/
[1] H. Drygas, The coordinate-free approach to Gauss-Markov estimation, Lecture notes in Operations Research and Mathematical Systems, Springer-Verlag Berlin-Heidelberg-New York 1970.
[2] H. Drygas, QR-decomposition from the statistical point of view, Recent Advances in Linear Models and Related Areas, Essays in Honour of Helge Toutenburg, Shalabh and Heumann (Eds) p. 293-311, Physica-Verlag, Springer, Heidelberg 2008.
[3] L. Schmetterer, Einführung in die Mathematische Statistik, 2. Auflage, Springer-Verlag Wien-New York 1966.
[4] S. Debasis and S.R. Jammalamadaka, Linear Models, An integrated approach, World Scientific, New Jersey-London-Singapore-Hong Kong 2003.