Robustness of estimation of first-order autoregressive model under contaminated uniform white noise
Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 1, pp. 53-68

Voir la notice de l'article provenant de la source Library of Science

The first-order autoregressive model with uniform innovations is considered. In this paper, we study the bias-robustness and MSE-robustness of modified maximum likelihood estimator of parameter of the model against departures from distribution of white noise. We used the generalized Beta distribution to describe these departures.
Keywords: autoregressive model, bias, MSE, robustness, generalized Beta distribution
@article{DMPS_2009_29_1_a3,
     author = {Nouali, Karima},
     title = {Robustness of estimation of first-order autoregressive model under contaminated uniform white noise},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {53--68},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2009_29_1_a3/}
}
TY  - JOUR
AU  - Nouali, Karima
TI  - Robustness of estimation of first-order autoregressive model under contaminated uniform white noise
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2009
SP  - 53
EP  - 68
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2009_29_1_a3/
LA  - en
ID  - DMPS_2009_29_1_a3
ER  - 
%0 Journal Article
%A Nouali, Karima
%T Robustness of estimation of first-order autoregressive model under contaminated uniform white noise
%J Discussiones Mathematicae. Probability and Statistics
%D 2009
%P 53-68
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2009_29_1_a3/
%G en
%F DMPS_2009_29_1_a3
Nouali, Karima. Robustness of estimation of first-order autoregressive model under contaminated uniform white noise. Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 1, pp. 53-68. http://geodesic.mathdoc.fr/item/DMPS_2009_29_1_a3/