Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2008_28_2_a4, author = {Malinowski, Marek}, title = {On some limit distributions for geometric random sums}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {247--266}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2008}, zbl = {1211.60009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a4/} }
Malinowski, Marek. On some limit distributions for geometric random sums. Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 2, pp. 247-266. http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a4/
[1] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Univ. Press, Cambridge 2004.
[2] B.V. Gnedenko and A.N. Kolmogorov, Limit distributions for sums of independent random variables, second ed., Addison-Wesley, Reading, Mass.-London 1968.
[3] V. Kalashnikov, Geometric sums: Bounds for rare events with applications, Kluwer Academic Publishers, Dordrecht 1997.
[4] L.B. Klebanov, G.M. Maniya and I.A. Melamed, A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables, Theory Prob. Appl. 29 (1985), 791-794.
[5] T.J. Kozubowski, The inner characterization of geometric stable laws, Statist. Decisions 12 (1994), 307-321.
[6] T.J. Kozubowski, Representation and properties of geometric stable laws, Approximation, probability, and related fields, ed. by G. Anastassiou and S.T. Rachev, Plenum Press, New York 1994, pp. 321-337.
[7] T.J. Kozubowski and S.T. Rachev, Univariate geometric stable laws, J. Comput. Anal. Appl. 1 (1999), 177-217.
[8] G.D. Lin, Characterizations of the Laplace and related distributions via geometric compound, Sankhya Ser. A 56 (1994), 1-9.
[9] E. Lukacs, Characteristic functions, second ed., Griffin, London 1970.
[10] M.T. Malinowski, Geometrically strictly semistable laws as the limit laws, Discussiones Mathematicae Probability and Statistics 27 (2007), 79-97.
[11] M. Maejima and G. Samorodnitsky, Certain probabilistic aspects of semistable laws, Ann. Inst. Statist. Math. 51 (1999), 449-462.
[12] D. Mejzler, On a certain class of infinitely divisible distributions, Israel J. Math. 16 (1973), 1-19.
[13] N.R. Mohan, R. Vasudeva and H.V. Hebbar, On geometrically infinitely divisible laws and geometric domains of attraction, Sankhyã Ser. A 55 (1993), 171-179.
[14] S.T. Rachev and G. Samorodnitsky, Geometric stable distributions in Banach spaces, J. Theoret. Probab. 2 (1994), 351-373.
[15] G. Samorodnitsky and M.S. Taqqu, Stable non-gaussian random processes: stochastic models with infinite variance, Chapman and Hall, New York-London 1994.
[16] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Univ. Press, Cambridge 1999.