On some limit distributions for geometric random sums
Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 2, pp. 247-266

Voir la notice de l'article provenant de la source Library of Science

We define and give the various characterizations of a new subclass of geometrically infinitely divisible random variables. This subclass, called geometrically semistable, is given as the set of all these random variables which are the limits in distribution of geometric, weighted and shifted random sums. Introduced class is the extension of, considered until now, classes of geometrically stable [5] and geometrically strictly semistable random variables [10]. All the results can be straightforward transfered to the case of random vectors in ℝ^d.
Keywords: random sum, infinite divisibility, semistability, geometric infinite divisibility, geometric stability, geometric semistability, characteristic function, limit distribution, Lévy process
@article{DMPS_2008_28_2_a4,
     author = {Malinowski, Marek},
     title = {On some limit distributions for geometric random sums},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {247--266},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a4/}
}
TY  - JOUR
AU  - Malinowski, Marek
TI  - On some limit distributions for geometric random sums
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2008
SP  - 247
EP  - 266
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a4/
LA  - en
ID  - DMPS_2008_28_2_a4
ER  - 
%0 Journal Article
%A Malinowski, Marek
%T On some limit distributions for geometric random sums
%J Discussiones Mathematicae. Probability and Statistics
%D 2008
%P 247-266
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a4/
%G en
%F DMPS_2008_28_2_a4
Malinowski, Marek. On some limit distributions for geometric random sums. Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 2, pp. 247-266. http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a4/