Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2008_28_2_a0, author = {Carvalho, Francisco and Mexia, Jo\~ao and Oliveira, M.}, title = {Canonic inference and commutative orthogonal block structure}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {171--181}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2008}, zbl = {1208.62093}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a0/} }
TY - JOUR AU - Carvalho, Francisco AU - Mexia, João AU - Oliveira, M. TI - Canonic inference and commutative orthogonal block structure JO - Discussiones Mathematicae. Probability and Statistics PY - 2008 SP - 171 EP - 181 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a0/ LA - en ID - DMPS_2008_28_2_a0 ER -
%0 Journal Article %A Carvalho, Francisco %A Mexia, João %A Oliveira, M. %T Canonic inference and commutative orthogonal block structure %J Discussiones Mathematicae. Probability and Statistics %D 2008 %P 171-181 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a0/ %G en %F DMPS_2008_28_2_a0
Carvalho, Francisco; Mexia, João; Oliveira, M. Canonic inference and commutative orthogonal block structure. Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a0/
[1] D.J. Ferreira, Inducing pivot variables and variance components in orthogonal normal models, Ph.D Thesis 2005.
[2] S.M. Ferreira, Inferęncia para Modelos Ortogonais com Segregação, Tese de Doutoramento 2006.
[3] M. Fonseca, J.T. Mexia and R. Zmyślony, Binary Operation on Jordan algebras and orthogonal normal models, Linear Algebra And Its Applications (2006), 75-86.
[4] A.I. Khuri, Advanced Calculus with Applications in Statistics, 2nd ed., Wiley 2003.
[5] J.T. Mexia, Best linear unbiased estimates, duality of F tests and the Scheffé multiple comparison method in presence of controlled heteroscedasticity, Comp. Stat. Data Analysis 10 (3) (1990).
[6] J.T. Mexia, Introdução à Inferęncia Estatística Linear, Edições Universitárias Lusófonas 1995.
[7] J.R. Schott, Matrix Analysis for Statistics, Wiley Series in Probability and Statistics 1997.
[8] J. Seely, Linear spaces and unbiased estimators. Application to a mixed linear model, The Annals of Mathenatical Statistics 41 (5) (1970), 1735-1745.
[9] R. Zmyślony, Completeness for a family of normal distributions, Mathematic Statistics, Banach Center Publications 6 (1980), 355-357.