Canonic inference and commutative orthogonal block structure
Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 2, pp. 171-181.

Voir la notice de l'article provenant de la source Library of Science

It is shown how to define the canonic formulation for orthogonal models associated to commutative Jordan algebras. This canonic formulation is then used to carry out inference. The case of models with commutative orthogonal block structures is stressed out.
Keywords: COBS, canonical inference, commutative Jordan algebras
@article{DMPS_2008_28_2_a0,
     author = {Carvalho, Francisco and Mexia, Jo\~ao and Oliveira, M.},
     title = {Canonic inference and commutative orthogonal block structure},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {171--181},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     zbl = {1208.62093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a0/}
}
TY  - JOUR
AU  - Carvalho, Francisco
AU  - Mexia, João
AU  - Oliveira, M.
TI  - Canonic inference and commutative orthogonal block structure
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2008
SP  - 171
EP  - 181
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a0/
LA  - en
ID  - DMPS_2008_28_2_a0
ER  - 
%0 Journal Article
%A Carvalho, Francisco
%A Mexia, João
%A Oliveira, M.
%T Canonic inference and commutative orthogonal block structure
%J Discussiones Mathematicae. Probability and Statistics
%D 2008
%P 171-181
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a0/
%G en
%F DMPS_2008_28_2_a0
Carvalho, Francisco; Mexia, João; Oliveira, M. Canonic inference and commutative orthogonal block structure. Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a0/

[1] D.J. Ferreira, Inducing pivot variables and variance components in orthogonal normal models, Ph.D Thesis 2005.

[2] S.M. Ferreira, Inferęncia para Modelos Ortogonais com Segregação, Tese de Doutoramento 2006.

[3] M. Fonseca, J.T. Mexia and R. Zmyślony, Binary Operation on Jordan algebras and orthogonal normal models, Linear Algebra And Its Applications (2006), 75-86.

[4] A.I. Khuri, Advanced Calculus with Applications in Statistics, 2nd ed., Wiley 2003.

[5] J.T. Mexia, Best linear unbiased estimates, duality of F tests and the Scheffé multiple comparison method in presence of controlled heteroscedasticity, Comp. Stat. Data Analysis 10 (3) (1990).

[6] J.T. Mexia, Introdução à Inferęncia Estatística Linear, Edições Universitárias Lusófonas 1995.

[7] J.R. Schott, Matrix Analysis for Statistics, Wiley Series in Probability and Statistics 1997.

[8] J. Seely, Linear spaces and unbiased estimators. Application to a mixed linear model, The Annals of Mathenatical Statistics 41 (5) (1970), 1735-1745.

[9] R. Zmyślony, Completeness for a family of normal distributions, Mathematic Statistics, Banach Center Publications 6 (1980), 355-357.