Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2008_28_1_a7, author = {Kala, Rados{\l}aw}, title = {On commutativity of projectors}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {157--165}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2008}, zbl = {1158.15012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2008_28_1_a7/} }
Kala, Radosław. On commutativity of projectors. Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 1, pp. 157-165. http://geodesic.mathdoc.fr/item/DMPS_2008_28_1_a7/
[1] C.R. Rao and M.B. Rao, Matrix Algebra and Its Applications to Statistics and Econometrics, World Scientific, Singapore 2001.
[2] J.K. Baksalary, Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, pp. 113-142 in: Proceedings of the Second International Tampere Conference in statistics, T. Pukkila, S. Puntanen (Eds.), University of Tampere, Tampere, Finland 1987.
[3] J.K. Baksalary and R. Kala, Two relations between oblique and Λ-orthogonal projectors, Linear Algebra Appl. 24 (1979), 99-103.
[4] C.R. Rao, Projectors, generalized inverses and the BLUE's, J. Roy. Statist. Soc. Ser. B 36 (1974), 442-448.
[5] J.K. Baksalary and O.M. Baksalary, Commutativity of projectors, Linear Algebra Appl. 341 (2002), 129-142.
[6] J.K. Baksalary, O.M. Baksalary and T. Szulc, A property of ortogonal projectors, Linear Algebra Appl. 354 (2002), 35-39.
[7] C.R. Rao and S.K. Mitra, Generalized Inverses of Matrices and Its Applications, Wiley, New York 1971.
[8] J. Gross and G. Trenkler, On the product of oblique projectors, Linear Multilinear Algebra 44 (1998), 247-259.
[9] Y. Takane and H. Yanai, On oblique projectors, Linear Algebra Appl. 289 (1999), 297-310.