On commutativity of projectors
Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 1, pp. 157-165.

Voir la notice de l'article provenant de la source Library of Science

It is shown that commutativity of two oblique projectors is equivalent with their product idempotency if both projectors are not necessarily Hermitian but orthogonal with respect to the same inner product.
Keywords: oblique projector, orthogonal projector, commutativity
@article{DMPS_2008_28_1_a7,
     author = {Kala, Rados{\l}aw},
     title = {On commutativity of projectors},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {157--165},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     zbl = {1158.15012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2008_28_1_a7/}
}
TY  - JOUR
AU  - Kala, Radosław
TI  - On commutativity of projectors
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2008
SP  - 157
EP  - 165
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2008_28_1_a7/
LA  - en
ID  - DMPS_2008_28_1_a7
ER  - 
%0 Journal Article
%A Kala, Radosław
%T On commutativity of projectors
%J Discussiones Mathematicae. Probability and Statistics
%D 2008
%P 157-165
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2008_28_1_a7/
%G en
%F DMPS_2008_28_1_a7
Kala, Radosław. On commutativity of projectors. Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 1, pp. 157-165. http://geodesic.mathdoc.fr/item/DMPS_2008_28_1_a7/

[1] C.R. Rao and M.B. Rao, Matrix Algebra and Its Applications to Statistics and Econometrics, World Scientific, Singapore 2001.

[2] J.K. Baksalary, Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, pp. 113-142 in: Proceedings of the Second International Tampere Conference in statistics, T. Pukkila, S. Puntanen (Eds.), University of Tampere, Tampere, Finland 1987.

[3] J.K. Baksalary and R. Kala, Two relations between oblique and Λ-orthogonal projectors, Linear Algebra Appl. 24 (1979), 99-103.

[4] C.R. Rao, Projectors, generalized inverses and the BLUE's, J. Roy. Statist. Soc. Ser. B 36 (1974), 442-448.

[5] J.K. Baksalary and O.M. Baksalary, Commutativity of projectors, Linear Algebra Appl. 341 (2002), 129-142.

[6] J.K. Baksalary, O.M. Baksalary and T. Szulc, A property of ortogonal projectors, Linear Algebra Appl. 354 (2002), 35-39.

[7] C.R. Rao and S.K. Mitra, Generalized Inverses of Matrices and Its Applications, Wiley, New York 1971.

[8] J. Gross and G. Trenkler, On the product of oblique projectors, Linear Multilinear Algebra 44 (1998), 247-259.

[9] Y. Takane and H. Yanai, On oblique projectors, Linear Algebra Appl. 289 (1999), 297-310.