Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2007_27_1-2_a3, author = {Covas, Ricardo}, title = {Linear model genealogical tree application to an odontology experiment}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {47--77}, publisher = {mathdoc}, volume = {27}, number = {1-2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a3/} }
TY - JOUR AU - Covas, Ricardo TI - Linear model genealogical tree application to an odontology experiment JO - Discussiones Mathematicae. Probability and Statistics PY - 2007 SP - 47 EP - 77 VL - 27 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a3/ LA - en ID - DMPS_2007_27_1-2_a3 ER -
Covas, Ricardo. Linear model genealogical tree application to an odontology experiment. Discussiones Mathematicae. Probability and Statistics, Tome 27 (2007) no. 1-2, pp. 47-77. http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a3/
[1] R. Covas, Inferência Semi-Bayesiana e Modelos de Componentes de Variância - Tese de Mestrado, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (document in Portuguese Language) 2003.
[2] R. Covas, Orthogonal Mixed Models and Commutative Jordan Algebras - PhD Thesis, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa 2007.
[3] R. Covas, J.T. Mexia and R. Zmyślony, Lattices of Jordan algebras, To be published in Linear Algebra and Aplications 2007.
[4] S. Ferreira, Inferência para Modelos Ortogonais com Segregação, Tese de Doutoramento - Universidade da Beira Interior (document in Portuguese Language) 2006.
[5] M. Fonseca, J.T. Mexia and R. Zmyślony, Binary Operations on Jordan Algebras and Orthogonal Normal Models, Linear Algebra and it's Applications 417 (1) (2006), 75-86.
[6] S. Gnot and J. Kleffe, Quadratic Estimation in Mixed Linear Models with two Variance Components, Journal Statistical Planning and Inference 8 (1983), 267-279.
[7] P. Jordan, J. von Neumann and E. Wigner, On an Algebraic Generalization of the Quantum Mechanical Formulation, Ann. Math. 36 (1934), 26-64.
[8] J.D. Malley, Optimal Unbiased Estimation of Variance Components, Lecture Notes in Statist. 39, Springer-Verlag, Berlin 1986.
[9] A. Michalski and R. Zmyślony, Testing Hypothesis for Variance components in Mixed Linear Models Statistics 27 (3-4) (1996), 297-310.
[10] A. Michalski and R. Zmyślony, Testing Hypothesis for Linear Fuctions of Parameters in Mixed Linear Models, Tatra Mt. Math. Publ. 17 (1999), 103-110.
[11] D.C. Montgomery, Design and Analysis of Experiments - 6th Edition, Wiley 2004.
[12] C.R. Rao and J. Kleffe, Estimation of Variance Components and Applications, North-Holland, Elsevier - Amsterdam 1988.
[13] J. Seely, Quadratic Subspaces and Completeness, Ann. Math. Stat. 42 N2 (1971), 710-721.
[14] J. Seely, Completeness for a family of multivariate normal distribution, Ann. Math. Stat. 43 (1972), 1644-1647.
[15] J. Seely, Minimal sufficient statistics and completeness for multivariate normal families, Sankhyã 39 (1977), 170-185.
[16] R. Zmyślony, On estimation of parameters in linear models, Applicationes Mathematicae XV 3 (1976), 271-276.