@article{DMPS_2007_27_1-2_a1,
author = {Jesus, Vera and Rodrigues, Paulo and Mexia, Jo\~ao},
title = {Inference for random effects in prime basis factorials using commutative {Jordan} algebras},
journal = {Discussiones Mathematicae. Probability and Statistics},
pages = {15--25},
year = {2007},
volume = {27},
number = {1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a1/}
}
TY - JOUR AU - Jesus, Vera AU - Rodrigues, Paulo AU - Mexia, João TI - Inference for random effects in prime basis factorials using commutative Jordan algebras JO - Discussiones Mathematicae. Probability and Statistics PY - 2007 SP - 15 EP - 25 VL - 27 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a1/ LA - en ID - DMPS_2007_27_1-2_a1 ER -
%0 Journal Article %A Jesus, Vera %A Rodrigues, Paulo %A Mexia, João %T Inference for random effects in prime basis factorials using commutative Jordan algebras %J Discussiones Mathematicae. Probability and Statistics %D 2007 %P 15-25 %V 27 %N 1-2 %U http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a1/ %G en %F DMPS_2007_27_1-2_a1
Jesus, Vera; Rodrigues, Paulo; Mexia, João. Inference for random effects in prime basis factorials using commutative Jordan algebras. Discussiones Mathematicae. Probability and Statistics, Tome 27 (2007) no. 1-2, pp. 15-25. http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a1/
[1] A. Day and R. Mukerjee, Fractional Factorial Plans, Wiley Series in Probability and Statistics (1999).
[2] M. Fonseca, J.T. Mexia and R. Zmyślony, Binary operations on Jordan algebras and orthogonal normal models, Linear Algebra and its Applications 417 (2006), 75-86.
[3] J.T. Mexia, Standardized Orthogonal Matrices and the Decomposition of the sum of Squares for Treatments, Trabalhos de Investigação nº2, Departamento de Matemática, FCT-UNL (1988).
[4] J.T. Mexia, Introdução à Inferência Estatística Linear, Edições Universitárias Lusófonas (1995).
[5] J.R. Schoot, Matrix Analysis for Statistics, Wiley Interscience (1997).
[6] J. Seely, Quadratic subspaces and completeness Ann. Math. Stat. (1971), 701-721.