Testing hypotheses in universal models
Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 2, pp. 127-149.

Voir la notice de l'article provenant de la source Library of Science

A linear regression model, when a design matrix has not full column rank and a covariance matrix is singular, is considered. The problem of testing hypotheses on mean value parameters is studied. Conditions when a hypothesis can be tested or when need not be tested are given. Explicit forms of test statistics based on residual sums of squares are presented.
Keywords: universal linear model, unbiased estimator, tests hypotheses
@article{DMPS_2006_26_2_a1,
     author = {Fi\v{s}erov\'a, Eva},
     title = {Testing hypotheses in universal models},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {127--149},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     zbl = {1128.62069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a1/}
}
TY  - JOUR
AU  - Fišerová, Eva
TI  - Testing hypotheses in universal models
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2006
SP  - 127
EP  - 149
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a1/
LA  - en
ID  - DMPS_2006_26_2_a1
ER  - 
%0 Journal Article
%A Fišerová, Eva
%T Testing hypotheses in universal models
%J Discussiones Mathematicae. Probability and Statistics
%D 2006
%P 127-149
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a1/
%G en
%F DMPS_2006_26_2_a1
Fišerová, Eva. Testing hypotheses in universal models. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 2, pp. 127-149. http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a1/

[1] L. Kubáček, L. Kubáčková and J. Volaufová, Statistical models with linear structures, Veda, Bratislava 1995.

[2] P.B. Pantnaik, The non-central χ² and F-distribution and their applications, Biometrika 36 (1949), 202-232.

[3] C.R. Rao, Linear statistical inference and its applications, J. Wiley and Sons, New York-London-Sydney 1965.

[4] C.R. Rao and S.K. Mitra, Generalized inverse of matrices and its applications, J. Wiley and Sons, New York-London-Sydney-Toronto 1971.

[5] J. Ryšavý, Higher geodesy, Česká matice technická, Praha 1947 (in Czech).