Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2006_26_2_a0, author = {Neumann, Konrad and Zontek, Stefan}, title = {On geometry of the set of admissible quadratic estimators of quadratic functions of normal parameters}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {109--125}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2006}, zbl = {1128.62005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a0/} }
TY - JOUR AU - Neumann, Konrad AU - Zontek, Stefan TI - On geometry of the set of admissible quadratic estimators of quadratic functions of normal parameters JO - Discussiones Mathematicae. Probability and Statistics PY - 2006 SP - 109 EP - 125 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a0/ LA - en ID - DMPS_2006_26_2_a0 ER -
%0 Journal Article %A Neumann, Konrad %A Zontek, Stefan %T On geometry of the set of admissible quadratic estimators of quadratic functions of normal parameters %J Discussiones Mathematicae. Probability and Statistics %D 2006 %P 109-125 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a0/ %G en %F DMPS_2006_26_2_a0
Neumann, Konrad; Zontek, Stefan. On geometry of the set of admissible quadratic estimators of quadratic functions of normal parameters. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 2, pp. 109-125. http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a0/
[1] S. Gnot, E. Rafajłowicz and A. Urbańska-Motyka, Statistical inference in a linear model for spatially located sensors and random input, Ann. Inst. Statist. Math. 53. 2 (2001), 370-379.
[2] S. Gnot and J. Kleffe, Quadratic estimation in mixed linear models with two variance components, J. Statist. Plann. Inference 8 (1983), 267-279.
[3] D.A. Harville, Quadratic unbiased estimation of two variance components for the one-way classification, Biometrika 56 (1969), 313-326.
[4] L.R. LaMotte, Admissibility in linear model, Ann. Statist. 19 (1982), 245-256.
[5] L.R. LaMotte, Admissibility, unbiasedness, and nonnegativity in the balanced, random, one-way anova model, Linear statistical inference (Poznań, 1984), Lecture Notes in Statist. 35 (1985), 184-199.
[6] K. Neumann and S. Zontek, On geometry of the set of admissible invariant quadratic estimators in balanced two variance components model, Statistical Papers 45 (2004), 67-80.
[7] A.L. Rukhin, Quadratic estimators of quadratic functions of normal parameters, J. Statist. Plann. Inference 15 (1987), 301-310.
[8] A.L. Rukhin, Admissible polynomial estimates for quadratic polynomials of normal parameters (in russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 184, Issued. Mat. Statist. 9 (1990), 234-247.
[9] R. Zmyślony, Quadratic admissible estimators, (in polish) Roczniki Polskiego Towarzystwa Matematycznego, Seria III: Matematyka Stosowana VII, (1976), 117-122.
[10] S. Zontek, Admissibility of limits of the unique locally best linear estimators with application to variance components models, Probab. Math. Statist. 9. 2 (1988), 29-44.