Properties of set-valued stochastic integrals
Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 1, pp. 83-103.

Voir la notice de l'article provenant de la source Library of Science

We introduce set-valued stochastic integrals driven by a square-integrable martingale and by a semimartingale. We investigate properties of both integrals.
Keywords: decomposable set, Hausdorff metric, predictable set-valued process, square-integrable martingale, semimartingale
@article{DMPS_2006_26_1_a4,
     author = {Motyl, Jerzy and Syga, Joachim},
     title = {Properties of set-valued stochastic integrals},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {83--103},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     zbl = {1129.93046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a4/}
}
TY  - JOUR
AU  - Motyl, Jerzy
AU  - Syga, Joachim
TI  - Properties of set-valued stochastic integrals
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2006
SP  - 83
EP  - 103
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a4/
LA  - en
ID  - DMPS_2006_26_1_a4
ER  - 
%0 Journal Article
%A Motyl, Jerzy
%A Syga, Joachim
%T Properties of set-valued stochastic integrals
%J Discussiones Mathematicae. Probability and Statistics
%D 2006
%P 83-103
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a4/
%G en
%F DMPS_2006_26_1_a4
Motyl, Jerzy; Syga, Joachim. Properties of set-valued stochastic integrals. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 1, pp. 83-103. http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a4/

[1] K.K. Aase and P. Guttrup, Estimation in models for security prices, Scand. Actuarial J. 3/4 (1987), 211-225.

[2] J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser Boston-Basel-Berlin 1990.

[3] G. Boscan, On Wiener stochastic integral of a multifunction, Seminarul de Teoria Probabilitatilor si Applicatii, Univ. Timisoara 1987.

[4] C. Castaing, Sur les multi-applications measurables, Rev. Fr. Inf. Recher. Oper. 1 (1967), 91-126.

[5] K.L. Chung and R.J. Williams, Introduction to stochastic integration, Birkhäuser Boston-Basel-Berlin 1990.

[6] D. Duffie, Dynamic Asset Pricing Theory, Princeton Univ. Press, Princeton, New Jersey 1996.

[7] E. Eberlein and U. Keller, Hyperbolic distributions in finance, Bernoulli 1 (1995), 281-299.

[8] B.D. Gelman and J.S. Gliklikh, Set-valued Itô integral, Priblizennye Metody Issledovani Differentialnych Uravneni i ikh Prilozeni, Mezbuzovskii Sbornik, Kuibyshevskii Universitaet (1984) (in Russian).

[9] I.I. Gihman and A.V. Skorohod, Stochastic Differential Equations, Springer Verlag, Berlin-Heidelberg-New York 1972.

[10] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-182.

[11] F. Hiai, Multivalued stochastic integrals and stochastic differential inclusions, Division of Applied Mathematics, Research Institude of Applied Electricity, Sapporo 060, Japan, (not published).

[12] M. Kisielewicz, Set-valued Stochastic Integrals and Stochastic Inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800.

[13] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. and Polish Sci. Publ., Warszawa-Dordrecht-Boston-London 1991.

[14] M. Kisielewicz, M. Michta and J. Motyl, Set Valued Approach to Stochastic Control. Part I (Existence and regurality properties), Dynamic Syst. Appl. 12 (3) (2003), 405-432.

[15] M. Kisielewicz, M. Michta and J. Motyl, Set Valued Approach to Stochastic Control. Part II (Viability and Semimartingale Issues), Dynamic Syst. and Appl. 12 (3) (2003), 433-466.

[16] P. Protter, Stochastic Integration and Differential Equations (A New Approach), Springer-Verlag, Berlin-Heideberg-New York 1990.