Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2006_26_1_a4, author = {Motyl, Jerzy and Syga, Joachim}, title = {Properties of set-valued stochastic integrals}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {83--103}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, zbl = {1129.93046}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a4/} }
TY - JOUR AU - Motyl, Jerzy AU - Syga, Joachim TI - Properties of set-valued stochastic integrals JO - Discussiones Mathematicae. Probability and Statistics PY - 2006 SP - 83 EP - 103 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a4/ LA - en ID - DMPS_2006_26_1_a4 ER -
Motyl, Jerzy; Syga, Joachim. Properties of set-valued stochastic integrals. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 1, pp. 83-103. http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a4/
[1] K.K. Aase and P. Guttrup, Estimation in models for security prices, Scand. Actuarial J. 3/4 (1987), 211-225.
[2] J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser Boston-Basel-Berlin 1990.
[3] G. Boscan, On Wiener stochastic integral of a multifunction, Seminarul de Teoria Probabilitatilor si Applicatii, Univ. Timisoara 1987.
[4] C. Castaing, Sur les multi-applications measurables, Rev. Fr. Inf. Recher. Oper. 1 (1967), 91-126.
[5] K.L. Chung and R.J. Williams, Introduction to stochastic integration, Birkhäuser Boston-Basel-Berlin 1990.
[6] D. Duffie, Dynamic Asset Pricing Theory, Princeton Univ. Press, Princeton, New Jersey 1996.
[7] E. Eberlein and U. Keller, Hyperbolic distributions in finance, Bernoulli 1 (1995), 281-299.
[8] B.D. Gelman and J.S. Gliklikh, Set-valued Itô integral, Priblizennye Metody Issledovani Differentialnych Uravneni i ikh Prilozeni, Mezbuzovskii Sbornik, Kuibyshevskii Universitaet (1984) (in Russian).
[9] I.I. Gihman and A.V. Skorohod, Stochastic Differential Equations, Springer Verlag, Berlin-Heidelberg-New York 1972.
[10] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-182.
[11] F. Hiai, Multivalued stochastic integrals and stochastic differential inclusions, Division of Applied Mathematics, Research Institude of Applied Electricity, Sapporo 060, Japan, (not published).
[12] M. Kisielewicz, Set-valued Stochastic Integrals and Stochastic Inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800.
[13] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. and Polish Sci. Publ., Warszawa-Dordrecht-Boston-London 1991.
[14] M. Kisielewicz, M. Michta and J. Motyl, Set Valued Approach to Stochastic Control. Part I (Existence and regurality properties), Dynamic Syst. Appl. 12 (3) (2003), 405-432.
[15] M. Kisielewicz, M. Michta and J. Motyl, Set Valued Approach to Stochastic Control. Part II (Viability and Semimartingale Issues), Dynamic Syst. and Appl. 12 (3) (2003), 433-466.
[16] P. Protter, Stochastic Integration and Differential Equations (A New Approach), Springer-Verlag, Berlin-Heideberg-New York 1990.