Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2006_26_1_a2, author = {Nunes, C\'elia and Mexia, Jo\~ao}, title = {Non-central generalized {F} distributions}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {47--61}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, zbl = {1128.62018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a2/} }
Nunes, Célia; Mexia, João. Non-central generalized F distributions. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a2/
[1] R.B. Davies, Algorithm AS 155: The distribution of a linear combinations of χ² random variables, Applied Statistics 29 (1980), 232-333.
[2] J.P. Imhof, Computing the distribution of quadratic forms in normal variables, Biometrika 48 (1961), 419-426.
[3] M. Fonseca, J.T. Mexia and R. Zmyślony, Exact distribution for the generalized F tests, Discussiones Mathematicae Probability and Statistics 22 (2002), 37-51.
[4] D.W. Gaylor and F.N. Hopper, Estimating the degrees of freedom for linear combinations of mean squares by Satterthwaite's formula, Technometrics 11 (1969), 691-706.
[5] A. Michalski and R. Zmyślony, Testing hypothesis for variance components in mixed linear models, Statistics 27 (1996), 297-310.
[6] A. Michalski and R. Zmyślony, Testing hypothesis for linear functions of parameters in mixed linear models, Tatra Mountain Mathematical Publications 17 (1999), 103-110.
[7] H. Robbins, Mixture of distribution, The Annals of Mathematical Statistics 19 (1948), 360-369.
[8] H. Robbins and E.J.G. Pitman, Application of the method of mixtures to quadratic forms in normal variates, The Annals of Mathematical Statistics 20 (1949), 552-560.
[9] F.E. Satterthwaite, An approximate distribution of estimates of variance components, Biometrics Bulletin 2 (1946), 110-114.