Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2006_26_1_a1, author = {Mexia, Jo\~ao and da Silva, Jo\~ao}, title = {Least squares estimator consistency: a geometric approach}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {19--45}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, zbl = {1128.62029}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a1/} }
TY - JOUR AU - Mexia, João AU - da Silva, João TI - Least squares estimator consistency: a geometric approach JO - Discussiones Mathematicae. Probability and Statistics PY - 2006 SP - 19 EP - 45 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a1/ LA - en ID - DMPS_2006_26_1_a1 ER -
Mexia, João; da Silva, João. Least squares estimator consistency: a geometric approach. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 1, pp. 19-45. http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a1/
[1] P. Billingsley, Probability and Measure, (third edition), John Wiley Sons 1995.
[2] S. Cambanis, S. Huang and G. Simons, On the theory of elliptically contoured distributions, Journal of Multivariate Analysis 11 (1981), 368-385.
[3] X. Chen, Some results on consistency of LS estimates, Chin. Sci. Bull. 39 (22) (1994), 1872-1876.
[4] X. Chen, Consistency of LS estimates of multiple regression under a lower order moment condition, Sci. Chin. 38 (12) (1995), 1420-1431.
[5] X. Chen, A note on the consistency of LS estimates in linear models, Chin. Ann. Math. Ser. B, 22 (4) (2001), 471-474.
[6] Y.S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales (third edition), Springer 1997.
[7] K.L. Chung, A Course in Probability Theory (third edition), Academic Press 2001.
[8] D. Dacunha-Castelle et M. Duflo, Probabilités et Statistiques: Problèmes à Temps Fixe, Masson 1982.
[9] K. Fang, S. Kotz and K. Ng, Symmetric Multivariate and Related Distributions, Monographs on Statistics and Applied Probability 36, Chapman Hall 1990.
[10] V. Koroliouk, N. Portenko, A. Skorokhod and A. Tourbine, Aide-Mémoire de Théorie des Probabilités et de Statistique Mathématique. Mir. (1983).
[11] M. Loève, Probability Theory I (fourth edition), Springer 1977.
[12] M. Loève, Probability Theory II (fourth edition), Springer 1978.
[13] L.T. Magalhães, Álgebra Linear como Introdução á Matemática Aplicada, Texto Editora 1992.
[14] B.M. Makarov, M.G. Goluzina, A.A. Lodkin, and A.N. Podkorytov, Selected Problems in Real Analysis, American Mathematical Society 1992.
[15] J.T. Mexia, and P. Corte Real, Extension of Kolmogorov's strong law to multiple regression, Revista de Estatística, (2° quadrimestre de 2001), 24 (2001), 277-278.
[16] J.T. Mexia, P. Corte Real, M.L. Esquível, e J. Lita da Silva, Convergência do estimador dos mínimos quadrados em modelos lineares, Estatística Jubilar. Actas do XII Congresso da Sociedade Portuguesa de Estatística, Edições SPE, (2005), 455-466.
[17] J.T. Mexia e J. Lita da Silva, A consistęncia do estimador dos mínimos quadrados em domínios de atracção maximais, (to appear) 2005.
[18] J.T. Mexia and J. Lita da Silva, Least squares estimator consistency: on error stability, (to appear) 2005.
[19] J. Mingzhong, Some new results of the strong consistency of multiple regression coefficients, Proceedings of the Second Asian Mathematical Conference 1995 (Tangmanee, S. Schulz, E. eds.), World Scientific (1995), 514-519.
[20] J. Mingzhong and X. Chen, Strong consistency of least squares estimate in multiple regression when the error variance is infinite, Stat. Sin. 9 (1) (1999), 289-296.
[21] W. Pestman, Mathematical Statistics, Walter de Gruyter Berlin 1998.
[22] C.R. Rao, Linear Statistical Inference and Its Applications, (second edition), John Wiley Sons (1973).
[23] R. Schmidt, Tail dependence for elliptically contoured distributions, Mathematical Methods of Operations Research 55 (2002), 301-327.
[24] D. Williams, Probability with Martingales, Cambridge University Press, Cambridge 1991.