Unit root test under innovation outlier contamination small sample case
Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 1, pp. 5-17.

Voir la notice de l'article provenant de la source Library of Science

The two sided unit root test of a first-order autoregressive model in the presence of an innovation outlier is considered. In this paper, we present three tests; two are usual and one is new. We give formulas computing the size and the power of the three tests when an innovation outlier (IO) occurs at a specified time, say k. Using a comparative study, we show that the new statistic performs better under contamination. A Small sample case is considered only.
Keywords: autoregressive process, Dickey-Fuller test, innovation outlier, power, size
@article{DMPS_2006_26_1_a0,
     author = {Atil, Lynda and Fellag, Hocine and Nouali, Karima},
     title = {Unit root test under innovation outlier contamination small sample case},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     zbl = {1128.62096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a0/}
}
TY  - JOUR
AU  - Atil, Lynda
AU  - Fellag, Hocine
AU  - Nouali, Karima
TI  - Unit root test under innovation outlier contamination small sample case
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2006
SP  - 5
EP  - 17
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a0/
LA  - en
ID  - DMPS_2006_26_1_a0
ER  - 
%0 Journal Article
%A Atil, Lynda
%A Fellag, Hocine
%A Nouali, Karima
%T Unit root test under innovation outlier contamination small sample case
%J Discussiones Mathematicae. Probability and Statistics
%D 2006
%P 5-17
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a0/
%G en
%F DMPS_2006_26_1_a0
Atil, Lynda; Fellag, Hocine; Nouali, Karima. Unit root test under innovation outlier contamination small sample case. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a0/

[1] [1] Cabuk and Springer, Distribution of the quotient of noncentral normal random variables, Communication in Statistics, Theory and Methods 19 (3) (1990), 1157-1168.

[2] [2]D.A. Dickey and W.A. Fuller, Distribution of estimators for autoregressive time series with unit root, J. Amer. Statist. Assoc., 74 (1979), 427-431.

[3] [3]F.X. Diebold, Empirical modeling of exchange rate dynamics, Springer Verlag 1988.

[4] [4] A.J. Fox, Outliers in Time Series, J. Roy. Stat. Soc., Ser. B, 34 (1972), 350-363.

[5] [5] P.H. Franses and N. Haldrup, The effects of additive outliers on tests for unit roots and cointegration, Journal of Business Econom. Statistics 12 (4) (1994), 471-478.

[6] [6] W.A. Fuller, Introduction to statistical time series, second edition, John Wiley, New York 1996.

[7] [7] J.P. Imhoff, Computing the distribution of quadratic forms in normal variables, Biometrika 48 (3,4) (1961), 419-426.

[8] [9] P. Perron, The great crash, the oil rice shock, and the unit root hypothesis, Econometrica 57 (6) (1989), 1361-1401.

[9] [10] P.C.B. Phillips, Time series with unit root, Econometrica 55 (1987), 277-301.

[10] [11] P.C.B. Phillips and P. Perron, Testing for a unit root in time series regression, Biometrika 75 (1988), 335-346.

[11] [12] D.W. Shin, S. Sarkar and J.H. Lee, Unit root tests for time series with outliers, Statistics and Probability Letters 30 (3) (1996), 189-197.

[12] [13] C.A. Sims and H. Uhlig, Understanding unit rooters: a helicopter tour, Econometrica 59 (6) (1991), 1591-1599.