Bayesian estimation of AR(1) models with uniform innovations
Discussiones Mathematicae. Probability and Statistics, Tome 25 (2005) no. 1, pp. 71-75
The first-order autoregressive model with uniform innovations is considered. In this paper, we propose a family of BAYES estimators based on a class of prior distributions. We obtain estimators of the parameter which perform better than the maximum likelihood estimator.
Keywords:
autoregressive model, Bayesian estimator, prior distribution, uniform distribution
@article{DMPS_2005_25_1_a3,
author = {Fellag, Hocine and Nouali, Karima},
title = {Bayesian estimation of {AR(1)} models with uniform innovations},
journal = {Discussiones Mathematicae. Probability and Statistics},
pages = {71--75},
year = {2005},
volume = {25},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMPS_2005_25_1_a3/}
}
TY - JOUR AU - Fellag, Hocine AU - Nouali, Karima TI - Bayesian estimation of AR(1) models with uniform innovations JO - Discussiones Mathematicae. Probability and Statistics PY - 2005 SP - 71 EP - 75 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMPS_2005_25_1_a3/ LA - en ID - DMPS_2005_25_1_a3 ER -
Fellag, Hocine; Nouali, Karima. Bayesian estimation of AR(1) models with uniform innovations. Discussiones Mathematicae. Probability and Statistics, Tome 25 (2005) no. 1, pp. 71-75. http://geodesic.mathdoc.fr/item/DMPS_2005_25_1_a3/
[1] C.B. Bell and E.P. Smith, Inference for non-negative autoregressive shemes, Communication in statistics, Theory and Methods 15 (8) (1986), 2267-2293.
[2] M.A. Amaral Turkmann, Bayesian analysis of an autoregressive process with exponential white noise, Statistics 4 (1990), 601-608.
[3] M. Ibazizen and H. Fellag, Bayesian estimation of an AR(1) process with exponential white noise, Statistics 37 (5) (2003), 365-372.