Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2004_24_1_a5, author = {Gnot, Stanis{\l}aw and Michalski, Andrzej and Urba\'nska-Motyka, Agnieszka}, title = {On some properties of {ML} and {REML} estimators in mixed normal models with two variance components}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {109--126}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, zbl = {1052.62029}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a5/} }
TY - JOUR AU - Gnot, Stanisław AU - Michalski, Andrzej AU - Urbańska-Motyka, Agnieszka TI - On some properties of ML and REML estimators in mixed normal models with two variance components JO - Discussiones Mathematicae. Probability and Statistics PY - 2004 SP - 109 EP - 126 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a5/ LA - en ID - DMPS_2004_24_1_a5 ER -
%0 Journal Article %A Gnot, Stanisław %A Michalski, Andrzej %A Urbańska-Motyka, Agnieszka %T On some properties of ML and REML estimators in mixed normal models with two variance components %J Discussiones Mathematicae. Probability and Statistics %D 2004 %P 109-126 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a5/ %G en %F DMPS_2004_24_1_a5
Gnot, Stanisław; Michalski, Andrzej; Urbańska-Motyka, Agnieszka. On some properties of ML and REML estimators in mixed normal models with two variance components. Discussiones Mathematicae. Probability and Statistics, Tome 24 (2004) no. 1, pp. 109-126. http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a5/
[1] D. Birkes and S.S. Wulff, Existence of maximum likelihood estimates in normal variance-components models, J. Statist. Plann. Inference 113 (2003), 35-47.
[2] T. Caliński and S. Kageyama, Block Designs: A Randomization Approach, Vol. I: Analysis, Lecture Notes in Statistics, Springer 2000.
[3] M.Y. Elbassouni, On the existency of explicit restricted maximim likelihood estimators in multivariate normal models, Sankhyā Series B 45 (1983), 303-305.
[4] S. Gnot, D. Stemann, G. Trenkler and A. Urbańska-Motyka, On maximum likelihood estimators in multivariate normal mixed models with two variance components, Tatra Mountains Mathematical Publications 17 (1999), 111-119.
[5] S. Gnot, D. Stemann, G. Trenkler and A. Urbańska-Motyka, Maximum likelihood estimators in mixed normal models with two variance components, Statistics 36 (4) (2002), 283-302.
[6] E.L. Lehman, Theory of Point Estimation, Wiley, New York 1983.
[7] A. Olsen, J. Seely and D. Birkes, Invariant quadratic unbiased estimation for two variance components, Ann. Statist. 4 (1976), 878-890.
[8] H.D. Patterson and R. Thompson, Recovery of intra-block information when block sizes are unequal, Biometrika 58 (1971), 545-554.
[9] H.D. Patterson and R. Thompson, Maximum likelihood estimation of components of variance, Proceedings of 8th Biometric Conference (1975), 197-207.
[10] C.R. Rao, MINQUE theory and its relation to ML and MML estimation of variance components, Sankhyā Series B 41 (1979), 138-153.
[11] C.R. Rao and J. Kleffe, Estimation of Variance Components and Applications, North Holland, Amsterdam 1988.
[12] Poduri S.R.S. Rao, Variance Components Estimation, Mixed Models, Methodologies and Applications, Chapman and Hall, London, Weinheim, New York, Tokyo, Melbourne, Madras 1997.
[13] S.R. Searle, G. Casella and Ch.E. McCulloch, Variance Components, Wiley, New York 1992.
[14] J. Seely, Minimal sufficient statistics and completeness for multivariate normal families, Sankhyā Ser.A 39 (1977), 170-185.
[15] G.W. Snedecor and W.G. Cochran, Statistical Methods (8th ed.), Ames, IA: Iowa State University Press 1989.
[16] S.E. Stern and A.H. Welsh, Likelihood inference for small variance components, The Canadian Journal of Statistics 28 (2000), 517-532.
[17] W.H. Swallow and J.F. Monahan, Monte Carlo comparison of ANOVA, MIVQUE, REML, and ML estimators of variance components, Technometrics 26 (1984), 4, 7-57.
[18] T.H. Szatrowski, Necessary and sufficient conditions for explicit solutions in the multivariate normal estimation problem for patterned means and covariances, Ann. Statist. 8 (1980), 803-810.
[19] T.H. Szatrowski and J.J. Miller, Explicit maximum likelihood estimates from balanced data in the mixed model of the analysis of variance, Ann. Statist. 8 (1980), 811-819.