Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2004_24_1_a2, author = {M\"uller, Christine}, title = {Redescending {M-estimators} in regression analysis, cluster analysis and image analysis}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {59--75}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, zbl = {1053.62081}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a2/} }
TY - JOUR AU - Müller, Christine TI - Redescending M-estimators in regression analysis, cluster analysis and image analysis JO - Discussiones Mathematicae. Probability and Statistics PY - 2004 SP - 59 EP - 75 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a2/ LA - en ID - DMPS_2004_24_1_a2 ER -
%0 Journal Article %A Müller, Christine %T Redescending M-estimators in regression analysis, cluster analysis and image analysis %J Discussiones Mathematicae. Probability and Statistics %D 2004 %P 59-75 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a2/ %G en %F DMPS_2004_24_1_a2
Müller, Christine. Redescending M-estimators in regression analysis, cluster analysis and image analysis. Discussiones Mathematicae. Probability and Statistics, Tome 24 (2004) no. 1, pp. 59-75. http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a2/
[1] D.F. Andrews, P.J. Bickel, F.R. Hampel, P.J. Huber, W.H. Rogers and J.W. Tukey, Robust Estimates of Location. Survey and Advances, Princeton University Press, Princeton 1972.
[2] O. Arslan, A simple test to identify good solutions of redescending M estimating equations for regression, Developments in Robust Statistics, Proceedings of ICORS 2001, R. Dutter, U. Gather, P.J. Rousseeuw and P. Filzmoser, (Eds.), (2003), 50-61.
[3] T. Bednarski and Ch.H. Müller, Optimal bounded influence regression and scale M-estimators, Statistics 35 (2001), 349-369.
[4] P.J. Bickel, Quelque aspects de la statistique robuste, In École d'Été de Probabilités de St. Flour. Springer Lecture Notes in Math. 876 (1981), 1-72.
[5] P.J. Bickel, Robust regression based on infinitesimal neighbourhoods, Ann. Statist. 12 (1984), 1349-1368.
[6] H. Chen and P. Meer, Robust computer vision through kernel density estimation, ECCV 2002, LNCS 2350, A. Heyden et al. (Eds.), Springer, Berlin (2002), 236-250.
[7] H. Chen, P. Meer and D.E. Tyler, Robust regression for data with multiple structures, 2001 IEEE Conference on Computer Vision and Pattern Recognition, vol. I, Kauai, HI, (2001), 1069-1075.
[8] C.K. Chu, I.K. Glad, F. Godtliebsen and J.S. Marron, Edge-preserving smoothers for image processing, J. Amer. Statist. Assoc. 93, (1998), 526-541.
[9] B.R. Clarke, Uniqueness and Frechét differentiability of functional solutions to maximum likelihood type equations, Ann. Statist. 4 (1983), 1196-1205.
[10] B.R. Clarke, Asymptotic theory for description of regions in which Newton-Raphson iterations converge to location M-estimators, J. Statist. Plann. Inference 15 (1986), 71-85.
[11] J.R. Collins, Robust estimation of a location parameter in the presence of asymmetry, Ann. Statist. 4 (1976), 68-85.
[12] J.B. Copas, On the unimodality of the likelihood for the Cauchy distribution, Biometrika 62 (1975), 701-704.
[13] D.L. Donoho. and J.P. Huber, The notion of breakdown point, P.J. Bickel, K.A. Doksum and J.L. Hodges, Jr., Eds., A Festschrift for Erich L. Lehmann, Wadsworth, Belmont, CA, (1983), 157-184.
[14] S.P. Ellis and S. Morgenthaler, Leverage and breakdown in L1 regression, J. Amer. Statist. Assoc. 87 (1992), 143-148.
[15] D.A. Freedman and P. Diaconis, On inconsistent M-estimators, Ann. Statist. 10 (1982), 454-461.
[16] G. Gabrielsen, On the unimodality of the likelihood for the Cauchy distribution: Some comments, Biometrika 69 (1982), 677-678.
[17] F.R. Hampel, Optimally bounding the gross-error-sensitivity and the influence of position in factor space, Proceedings of the ASA Statistical Computing Section, ASA, Washington, D.C., (1978), 59-64.
[18] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel, Robust Statistics - The Approach Based on Influence Functions, John Wiley, New York 1986.
[19] W. Härdle and T. Gasser, Robust nonparametric function fitting, J. R. Statist. Soc. B 46 (1984), 42-51.
[20] X. He, J. Jurecková, R. Koenker and S. Portnoy, Tail behavior of regression estimators and their breakdown points, Econometrica 58 (1990), 1195-1214.
[21] X. He, D.G. Simpson and G. Wang, Breakdown points of t-type regression estimators, Biometrika 87 (2000), 675-687.
[22] C. Hennig, Regression fixed point clusters: motivation, consistency and simulations, Preprint 2000-02, Fachbereich Mathematik, Universität Hamburg 2000.
[23] C. Hennig, Clusters, outliers, and regression: Fixed point clusters, Journal of Multivariate Analysis. 86/1 (2003), 183-212.
[24] M. Hillebrand, On robust corner-preserving smoothing in image processing, Ph.D. thesis at the Carl von Ossietzky University Oldenburg, Germany 2002.
[25] M. Hillebrand and Ch.H. Müller, On consistency of redescending M-kernel smoothers, Submitted 2002.
[26] P.J. Huber, Minimax aspects of bounded-influence regression (with discussion), J. Amer. Statist. Assoc. 78 (1983), 66-80.
[27] J. Jurecková and P.K. Sen, Robust Statistical Procedures. Asymptotics and Interrelations, Wiley, New York 1996.
[28] W.S. Krasker, Estimation in linear regression models with disparate data points, Econometrica 48 (1980), 1333-1346.
[29] V. Kurotschka and Ch.H. Müller, Optimum robust estimation of linear aspects in conditionally contaminated linear models, Ann. Statist. 20 (1992), 331-350.
[30] K.L. Lange, R.J.A. Little and J.M.G. Taylor, Robust statistical modeling using the t distribution J. Amer. Statist. Assoc. 84 (1989), 881-896.
[31] R.A. Maronna, O.H. Bustos and V.J. Yohai, Bias- and efficiency-robustness of general M-estimators for regression with random carriers, Smoothing Techniques for Curve Estimation (T. Gasser and M. Rosenblatt, eds.) Springer, Berlin, Lecture Notes in Mathematics 757 (1979), 91-116.
[32] I. Mizera, On consistent M-estimators: tuning constants, unimodality and breakdown, Kybernetika 30 (1994), 289-300.
[33] I. Mizera, Weak continuity of redescending M-estimators of location with an unbounded objective function, Tatra Mountains Math. Publ. 7 (1996), 343-347.
[34] I. Mizera and Ch.H. Müller, Breakdown points and variation exponents of robust M-estimators in linear models, Ann. Statist. 27 (1999), 1164-1177.
[35] I. Mizera and Ch.H. Müller, Breakdown points of Cauchy regression-scaleestimators, Stat. Prob. Letters 57 (2002), 79-89.
[36] S. Morgenthaler, Fitting redescending M-estimators in regression, Robust Regression, H.D. Lawrence and S. Arthur, (Eds.), Dekker, New York (1990), 105-128.
[37] Ch.H. Müller, Optimal designs for robust estimation in conditionally contaminated linear models, J. Statist. Plann. Inference. 38 (1994), 125-140.
[38] Ch.H. Müller, Breakdown points for designed experiments, J. Statist. Plann. Inference, 45 (1995), 413-427.
[39] Ch.H. Müller, Optimal breakdown point maximizing designs, Tatra Mountains Math. Publ. 7, (1996), 79-85.
[40] Ch.H. Müller, Robust Planning and Analysis of Experiments, Springer, New York, Lecture Notes in Statistics 124 (1997).
[41] Ch.H. Müller, On the use of high breakdown point estimators in the image analysis, Tatra Mountains Math. Publ. 17 (1999), 283-293.
[42] Ch.H. Müller, Robust estimators for estimating discontinuous functions, Metrika 55 (2002a), 99-109.
[43] Ch.H. Müller, Comparison of high-breakdown-point estimators for image denoising, Allg. Stat. Archiv 86 (2002b), 307-321.
[44] Ch.H. Müller and T. Garlipp, Simple consistent cluster methods based on redescending M-estimators with an application to edge identification in images, To appear in Journal of Multivariate Analysis, (2002).
[45] P. Qiu, Nonparametric estimation of jump surface, The Indian Journal of Statistics 59, Series A, (1997), 268-294.
[46] H. Rieder, Robust regression estimators and their least favorable contamination curves, Stat. Decis. 5 (1987), 307-336.
[47] H. Rieder, Robust Asymptotic Statistics, Springer, New York 1994.
[48] B.W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London 1986.
[49] S. Smith and J. Brady, SUSAN - a new approach to low level image processing, International Journal of Computer Vision 23 (1997), 45-78.
[50] R.H. Zamar, Robust estimation in the errors-in-variables model, Biometrika 76 (1989), 149-160.