Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2004_24_1_a0, author = {R\'o\.za\'nski, Roman and Zagda\'nski, Adam}, title = {On the consistency of sieve bootstrap prediction intervals for stationary time series}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {5--40}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, zbl = {1063.62129}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a0/} }
TY - JOUR AU - Różański, Roman AU - Zagdański, Adam TI - On the consistency of sieve bootstrap prediction intervals for stationary time series JO - Discussiones Mathematicae. Probability and Statistics PY - 2004 SP - 5 EP - 40 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a0/ LA - en ID - DMPS_2004_24_1_a0 ER -
%0 Journal Article %A Różański, Roman %A Zagdański, Adam %T On the consistency of sieve bootstrap prediction intervals for stationary time series %J Discussiones Mathematicae. Probability and Statistics %D 2004 %P 5-40 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a0/ %G en %F DMPS_2004_24_1_a0
Różański, Roman; Zagdański, Adam. On the consistency of sieve bootstrap prediction intervals for stationary time series. Discussiones Mathematicae. Probability and Statistics, Tome 24 (2004) no. 1, pp. 5-40. http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a0/
[1] A.M. Alonso, D. Peña and J. Romo, Introducing model uncertainty in time series bootstrap, Working Paper, Statistics and Econometric Series, Universidad Carlos III de Madrid 9 (2001), 1-14.
[2] A.M. Alonso, D. Peña and J. Romo, Forecasting time series with sieve bootstrap, Journal of Statistical Planning and Inference, 100 (2002), 1-11.
[3] T. Anderson, The Statistical Analysis of Time Series, Wiley, New York 1971.
[4] Y.K. Belyaev, The continuity theorem and its application to resampling from sums of random variables, Theory of Stochastic Processes 3 (19) (1997), 100-109.
[5] Y.K. Belyaev and S. Sjöstedt - de Luna, Weakly approaching sequences of random distributions, Journal of Applied Probability 37 (2000), 807-822.
[6] P. Brockwell and R. Davis, Time Series Theory and Method, Springer-Verlag 1987.
[7] P. Bühlmann, Moving-average representation of autoregressive approximations, Stochastic Processes and their Applications 60 (1995), 331-342.
[8] P. Bühlmann, Sieve bootstrap for time series, Bernouli 3 (2) (1997), 123-148.
[9] P. Bühlmann, Sieve bootstrap for smoothing in nonstationary time series, The Annals of Statistics 26 (1) (1998), 48-83.
[10] P. Bühlmann, Bootstraps for Time Series, Statistical Science 17 (1) (2002), 52-72.
[11] R. Cao, et al, Saving Computer time in constructing consistent bootstrap prediction intervals for autoregressive processes, Comm. Statist. Simulation Comput. 26 (3) (1997), 961-978.
[12] M. Deistler and E.J. Hannan, The Statistical Theory of Linear Systems, Wiley, New York 1988.
[13] M. Grigoletto, Bootstrap prediction intervals for autoregressions: some alternatives, International Journal of Forecasting 14 (1998), 447-456.
[14] U. Grenander, Abstract Inference, Wiley, New York 1981.
[15] E.J. Hannan and L. Kavalieris, Regressions, autoregression models, Journal Time Series Analysis 7 (1986), 27-49.
[16] J.H. Kim, Bootstrap-after-bootstrap prediction intervals for autoregressive models, Journal of Business Economic Statistics 19 (1) (2001), 117-128.
[17] G. Masarotto, Bootstrap prediction intervals for autoregressions, International Journal of Forecasting 6 (1990), 229-239.
[18] A.M. Polansky, Stabilizing bootstrap-t confidence intervals for small samples, The Canadian Journal of Statistics 28 (3) (2000), 501-516.
[19] D.N. Politis, J.P. Romano and M. Wolf, Subsampling, Springer-Verlag, New York 1999.
[20] J. Shao and D. Tu, The Jacknife and Bootstrap, Springer-Verlag, New York 1995.
[21] R.A. Stine, Estimating properties of autoregressive forecast, Journal of the American Statistical Association 82 (400) (1987), 1073-1078.
[22] L.A. Thombs and R. Schucany, Bootstrap prediction intervals for autoregression, Journal of the American Statistical Association 85 (410) (1990), 486-492.