Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2003_23_2_a5, author = {Fonseca, Miguel and Mexia, Jo\~ao and Zmy\'slony, Roman}, title = {Estimators and tests for variance components in cross nested orthogonal designs}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {175--201}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2003}, zbl = {1049.62065}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2003_23_2_a5/} }
TY - JOUR AU - Fonseca, Miguel AU - Mexia, João AU - Zmyślony, Roman TI - Estimators and tests for variance components in cross nested orthogonal designs JO - Discussiones Mathematicae. Probability and Statistics PY - 2003 SP - 175 EP - 201 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2003_23_2_a5/ LA - en ID - DMPS_2003_23_2_a5 ER -
%0 Journal Article %A Fonseca, Miguel %A Mexia, João %A Zmyślony, Roman %T Estimators and tests for variance components in cross nested orthogonal designs %J Discussiones Mathematicae. Probability and Statistics %D 2003 %P 175-201 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2003_23_2_a5/ %G en %F DMPS_2003_23_2_a5
Fonseca, Miguel; Mexia, João; Zmyślony, Roman. Estimators and tests for variance components in cross nested orthogonal designs. Discussiones Mathematicae. Probability and Statistics, Tome 23 (2003) no. 2, pp. 175-201. http://geodesic.mathdoc.fr/item/DMPS_2003_23_2_a5/
[1] M. Fonseca, J.T. Mexia and R. Zmyślony, Estimating and testing of variance components: an application to a grapevine experiment, Biometrical Letters 40 (1) (2003), 1-7.
[2] M. Fonseca, J.T. Mexia and R. Zmyślony, Exact distribution for the generalized F tests, Discuss. Math.-Probability and Satatistics 1,2 (2002), 37-51.
[3] A.I. Khuri, Direct Products: A powerful tool for the analysis of balanced data, Commun. Stat. Theory, 11 (1977), 2903-2929.
[4] A.I. Khuri, T. Matthew and B.K. Sinha, Statistical Tests for Mixed Linear Models, Wiley 1997.
[5] M. Loeve, Probability Theory, D. van Nostrand Company 1963.
[6] J. Seely and G. Zyskind, Linear spaces and minimum variance unbiased estimation, Ann. Math. Stat. 42 (1971), 691-703.
[7] J. Seely and G. Zyskind, Quadratic subspaces and completeness, Ann. Math. Stat. 42 (1971), 710-721.
[8] J. Seely, Minimal sufficient statistics and completeness for multivariate normal families, Sankhya, Ser. (A) 39 (1977), 170-185.
[9] T.A. Severini, Likelihood Methods in Statistics, Oxford University Press 2000.
[10] W.H. Steeb, Kronecker Product and Applications, Manheim 1991.
[11] R. Zmyślony, Completeness for a family of normal distributions, Mathematical Statistics, Banach Cent. Publ. 6 (1980), 355-357.
[12] A. Michalski and R. Zmyślony, Testing hypotheses for variance components in mixed linear models, Statistics (3-4) 27 (1996), 297-310.
[13] R. Zmyślony and S. Zontek, On robust estimation of variance components via von Mises functionals, Discuss. Math.-Algebra and Stoch. Methods, 15 (2) (1995), 349-362.
[14] A. Michalski and R. Zmyślony, Testing hypotheses for linear functions of parameters in mixed linear models, Tatra Mt. Math. Publ. 17 (1999), 103-110.
[15] S. Zontek, Robust estimation in linear models to spatially located sensors and random input, Tatra Mountain Publications 17 (1999), 301-310.