Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2003_23_2_a1, author = {Mexia, Jo\~ao and Corte Real, Pedro}, title = {Compact hypothesis and extremal set estimators}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {103--121}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2003}, zbl = {1049.62026}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2003_23_2_a1/} }
TY - JOUR AU - Mexia, João AU - Corte Real, Pedro TI - Compact hypothesis and extremal set estimators JO - Discussiones Mathematicae. Probability and Statistics PY - 2003 SP - 103 EP - 121 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2003_23_2_a1/ LA - en ID - DMPS_2003_23_2_a1 ER -
Mexia, João; Corte Real, Pedro. Compact hypothesis and extremal set estimators. Discussiones Mathematicae. Probability and Statistics, Tome 23 (2003) no. 2, pp. 103-121. http://geodesic.mathdoc.fr/item/DMPS_2003_23_2_a1/
[1] T. Amemiya, Advanced Econometrics, Harvard University Press 1985.
[2] J. Burguete, R. Gallant and G. Souza, On Unification of the Asymptotic Theory of Nonlinear Econometric Models, Econometric Reviews, 1, (1982), 151-190.
[3] D.R. Cox and E.J. Snell, The Analysis of Binary Data, Chapman Hall, London, 2nd Ed., 1989.
[4] D. J. Finney, Probit Analysis, Cambridge University Press 1971.
[5] C. Gourieroux, A. Monfort and A. Trognon, Pseudo Maximum Likelihood Methods: Theory, Econometrica 52 (3), (1984).
[6] C. Gourieroux, A. Monfort and A. Trognon, Pseudo Maximum Likelihood Methods: Applications To Poisson Models, Econometrica 52 (3) (1984).
[7] R. Gallant and A. Holly, Statistical Inference in an Implicit, Nonliner, Simultaneous Equation Model in the Context of Maximum Likelihood Estimation, Econometrica 48 (1980), 697-720.
[8] J. Hoffman-Jorgensen, The Theory Of Analytic Sets, Aarhus Universitet, Matematisk Institut, Various Publications Series, No.10, March 1970.
[9] J. Hoffman-Jorgensen, Asymptotic Likelihood Theory, Aarhus Universitet, Matematisk Institut, Various Publications Series, No. 40, March 1992.
[10] D.E. Jennings, Judging Inference Adequacy in Logist Regression, Journal of American Statistical Association 81 (1986), 471-476.
[11] R. Jennrich, Asymptotic Properties of Nonlinear Least Squares Estimators, The Annals of Mathematical Statistics 40 (1969), 633-643.
[12] J.D. Jobson and W.A. Fuller, Least Squares Estimation When the Covariance Matrix and Parameter Vector Are Functionally Related, Journal of the American Statistical Association 75 (1980), 176-181.
[13] J.T. Mexia and P. Corte Real, Strong Law of Large Numbers for Additive Extremum Estimators, Discussiones Mathematicae - Probability and Statistics 21 (2002), 81-88.
[14] J.T. Mexia, Asymptotic Chi-squared Tests, Designs, and Log-Linear Models, Trabalhos de Investigaçäo No. 1, 1992.
[15] J.T. Mexia, Controlled Heteroscedasticity, Quocient Vector Spaces and F Tets for Hypothesis On Mean Vectors, Trabalhos de Investigaçäo No. 1, 1991.
[16] E. Malinvaud, The Consistency of Nonlinear Regressions, The Annals of Mathematical Statistics 41 (1970), 956-969.
[17] U. Mosco, Convergence Of Convex Sets Of Solutions Of Variational Inequalies, Advances in Mathematics 3 (1969), 510-585.
[18] J.T. Oliveira, Statistical Choice of Univariate Extreme Models, Statistical Distributions in Scientific Work, Taillie et al. (eds) - Reichel, Dordrecht, 6 (1980), 367-382.
[19] H. Scheffé, The Analysis of Variance, John Willey Sons, New York 1959.
[20] A. Wald, Note On The Consistency of The Maximum Likelihood Estiamte, Annals of Mathematics and Statistics 20 (1949), 595-601.
[21] R.A. Wijsman, Convergence of Sequences of Convex Sets II, Transactions of American Mathematical Society 123 (1966), 32-45.
[22] D. Williams, Probability with Martingales, Cambridge Mathematical Textbooks 1991.