Band copulas as spectral measures for two-dimensional stable random vectors
Discussiones Mathematicae. Probability and Statistics, Tome 23 (2003) no. 1, pp. 69-75.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study basic properties of symmetric stable random vectors for which the spectral measure is a copula, i.e., a distribution having uniformly distributed marginals.
Keywords: Symmetric stable random vector, spectral measure, canonical spectral measure, copula, James corelation for random variables
@article{DMPS_2003_23_1_a2,
     author = {Bojarski, Jacek and K. Misiewicz, Jolanta},
     title = {Band copulas as spectral measures for two-dimensional stable random vectors},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {69--75},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     zbl = {1049.60017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2003_23_1_a2/}
}
TY  - JOUR
AU  - Bojarski, Jacek
AU  - K. Misiewicz, Jolanta
TI  - Band copulas as spectral measures for two-dimensional stable random vectors
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2003
SP  - 69
EP  - 75
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2003_23_1_a2/
LA  - en
ID  - DMPS_2003_23_1_a2
ER  - 
%0 Journal Article
%A Bojarski, Jacek
%A K. Misiewicz, Jolanta
%T Band copulas as spectral measures for two-dimensional stable random vectors
%J Discussiones Mathematicae. Probability and Statistics
%D 2003
%P 69-75
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2003_23_1_a2/
%G en
%F DMPS_2003_23_1_a2
Bojarski, Jacek; K. Misiewicz, Jolanta. Band copulas as spectral measures for two-dimensional stable random vectors. Discussiones Mathematicae. Probability and Statistics, Tome 23 (2003) no. 1, pp. 69-75. http://geodesic.mathdoc.fr/item/DMPS_2003_23_1_a2/

[1] J. Bojarski, A new class of band copulaes - distributions with uniform marginals, preprint (2001).

[2] T.S. Ferguson, A class of symmetric bivariate uniform distributions, Statist. Papers 36, (1995).

[3] E. Feldheim, Etude de la stabilité de lois de probabilité, Ph. Thesis, Thése de la Faculté des sciences de Paris 1937.

[4] M. Ledoux and M. Talagrand, Probability in Banach spaces, Isoperymetry and Processes, A series of Modern Surveys in Mathematics, Springer Verlag, band 23 (1991).

[5] P. Lévy, Théorie de l'addition des variables aléatoires, 2nd edn, Gauthier-Villars, Paris 1954.

[6] Nelsen R. B, An Introduction to Copulas, John Wiley Sons, New York 1999.

[7] D. Kurowicka and R. Cooke, Conditional and partial correlation for graphical uncertainty model, Proceedings of the 2nd International Conference on Mathematical Methods in Reliability, Recent Advences in Reliability Theory, Birkhäuser 2000, 259-276.

[8] G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman Hall, London 1993.