Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2003_23_1_a1, author = {Rai, Shivani and Banerjee, Shakti and Kageyama, Sanpei}, title = {Some constructions of nested balanced equireplicate block designs}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {45--68}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2003}, zbl = {1049.62088}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2003_23_1_a1/} }
TY - JOUR AU - Rai, Shivani AU - Banerjee, Shakti AU - Kageyama, Sanpei TI - Some constructions of nested balanced equireplicate block designs JO - Discussiones Mathematicae. Probability and Statistics PY - 2003 SP - 45 EP - 68 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2003_23_1_a1/ LA - en ID - DMPS_2003_23_1_a1 ER -
%0 Journal Article %A Rai, Shivani %A Banerjee, Shakti %A Kageyama, Sanpei %T Some constructions of nested balanced equireplicate block designs %J Discussiones Mathematicae. Probability and Statistics %D 2003 %P 45-68 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2003_23_1_a1/ %G en %F DMPS_2003_23_1_a1
Rai, Shivani; Banerjee, Shakti; Kageyama, Sanpei. Some constructions of nested balanced equireplicate block designs. Discussiones Mathematicae. Probability and Statistics, Tome 23 (2003) no. 1, pp. 45-68. http://geodesic.mathdoc.fr/item/DMPS_2003_23_1_a1/
[1] L. Angelis, C. Moyssiadis and S. Kageyama, Constructions of generalized binary proper efficiency balanced block designs with two different replication numbers, Sankhy¯a Ser. B 56 (1994), 259-266.
[2] E.J.B. Billington and P.T. Robinson, A list of balanced ternary designs with R ≤ 15 and some necessary existence conditions, Ars Combinatoria 10 (1983), 235-258.
[3] T. Caliński and S. Kageyama, Block Designs: A Randomization Approach, Volume I: Analysis, Springer, New York 2003.
[4] T. Caliński and S. Kageyama, Block Designs: A Randomization Approach, Volume II: Design. Springer, New York 2003.
[5] C.J. Colbourn and M.J. Colbourn, Nested triple systems, Ars Combinatoria 16 (1983), 27-34.
[6] A. Dey, Theory of Block Designs, Wiley Eastern, New Delhi 1986.
[7] D.K. Ghosh K. Joshi and S. Kageyama, Ternary variance balanced designs through BIB and GD designs, J. Japan Statist. Soc. 23 (1993), 75-81.
[8] D.K. Ghosh and P.K. Karmakar, Some series of efficiency balanced designs, Austral. J. Statist. 30 (1988), 47-51.
[9] D.K. Ghosh A. Shah and S. Kageyama, Constructions of variance balanced designs and efficiency balanced block designs, J. Japan Statist. Soc. 24 (1994), 201-208.
[10] M. Jimbo and S. Kuriki, Constructions of nested designs, Ars Combinatoria 16 (1983), 275-285.
[11] S. Kageyama, On properties of efficiency-balanced designs, Commun. Statist. -Theor. Meth. A 9 (1980), 597-616.
[12] K. Katulska, Constructions of balanced ternary block designs, Discussiones Mathematicae - Algebra and Stochastic Methods 18 (1998), 167-177.
[13] J.Q. Longyear, A survey of nested designs, J. Statist. Plann. Inference 5 (1981), 181-187.
[14] J.P. Morgan, Nested designs, Handbook of Statistics, Design and Analysis of Experiments, Elsevier Science, Amsterdam, 13 (1996), 939-976.
[15] D.A. Preece, Nested balanced incomplete block designs, Biometrika 54 (1967), 479-486.
[16] D. Raghavarao, Constructions and Combinational Problems in Design of Experiments. Dover, New York 1988.