Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2002_22_1-2_a5, author = {Zmy\'slony, Roman and Zontek, Stefan}, title = {Robust m-estimator of parameters in variance components model}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {61--71}, publisher = {mathdoc}, volume = {22}, number = {1-2}, year = {2002}, zbl = {1037.62022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a5/} }
TY - JOUR AU - Zmyślony, Roman AU - Zontek, Stefan TI - Robust m-estimator of parameters in variance components model JO - Discussiones Mathematicae. Probability and Statistics PY - 2002 SP - 61 EP - 71 VL - 22 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a5/ LA - en ID - DMPS_2002_22_1-2_a5 ER -
%0 Journal Article %A Zmyślony, Roman %A Zontek, Stefan %T Robust m-estimator of parameters in variance components model %J Discussiones Mathematicae. Probability and Statistics %D 2002 %P 61-71 %V 22 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a5/ %G en %F DMPS_2002_22_1-2_a5
Zmyślony, Roman; Zontek, Stefan. Robust m-estimator of parameters in variance components model. Discussiones Mathematicae. Probability and Statistics, Tome 22 (2002) no. 1-2, pp. 61-71. http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a5/
[1] T. Bednarski, Fréchet differentiability and robust estimation, Asymptotic Statistics. Proc. of the Fifth Prague Symp. Physica Verlag, Springer, (1994), 49-58.
[2] T. Bednarski, B.R. Clarke and W. Kokiewicz, Statistical expansions and locally uniform Fréchet differentiability, J. Australian Math. Soc., Ser. A 50 (1991), 88-97.
[3] T. Bednarski and B.R. Clarke, Trimmed likelihood estimation of location and scale of the normal distribution, Australian J. Statists. 35 (1993), 141-153.
[4] T. Bednarski and Z. Zontek, Robust estimation of parameters in mixed unbalanced models, Ann. Statist. 24 (4) (1996), 1493-1510.
[5] B.R. Clarke, Uniqueness and Fréchet differentiability of functional solutions to maximum likelihood type equations, Ann. Statist. 11 (1983), 1196-1206.
[6] B.R. Clarke, Nonsmooth analysis and Fréchet differentiability of M-functionals, Probab. Th. Rel. Fields 73 (1986), 197-209.
[7] B. Iglewicz, Robust scale estimators and confidence intervals for location, D.C. Hoagling, F. Mosteller and J.W. Tukey, Eds., Understanding Robust and Exploratory Data Analysis, Wiley, New York, (1983), 404-431.
[8] J. Kiefer, On large deviations of the empiric D.F. of vector chance variables and a law of iterated logarithm, Pacific J. Math. 11 (1961), 649-660.
[9] D.M. Rocke, Robustness and balance in the mixed model, Biometrics 47 (1991), 303-309.
[10] J. Seely, Quadratic subspaces and completness, Ann. Math. Statist. 42 (1971), 710-721.
[11] R. Zmyślony and H. Drygas, Jordan algebras and Bayesian quadratic estimation of variance components, Linear Algebra and its Applications 168 (1992), 259-275.