Approximate bias for first-order autoregressive model with uniform innovations. Small sample case
Discussiones Mathematicae. Probability and Statistics, Tome 22 (2002) no. 1-2, pp. 15-26
The first-order autoregressive model with uniform innovations is considered. The approximate bias of the maximum likelihood estimator (MLE) of the parameter is obtained. Also, a formula for the approximate bias is given when a single outlier occurs at a specified time with a known amplitude. Simulation procedures confirm that our formulas are suitable. A small sample case is considered only.
Keywords:
autoregressive model, bias, outlier, uniform distribution
@article{DMPS_2002_22_1-2_a1,
author = {Nouali, Karima and Fellag, Hocine},
title = {Approximate bias for first-order autoregressive model with uniform innovations. {Small} sample case},
journal = {Discussiones Mathematicae. Probability and Statistics},
pages = {15--26},
year = {2002},
volume = {22},
number = {1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a1/}
}
TY - JOUR AU - Nouali, Karima AU - Fellag, Hocine TI - Approximate bias for first-order autoregressive model with uniform innovations. Small sample case JO - Discussiones Mathematicae. Probability and Statistics PY - 2002 SP - 15 EP - 26 VL - 22 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a1/ LA - en ID - DMPS_2002_22_1-2_a1 ER -
%0 Journal Article %A Nouali, Karima %A Fellag, Hocine %T Approximate bias for first-order autoregressive model with uniform innovations. Small sample case %J Discussiones Mathematicae. Probability and Statistics %D 2002 %P 15-26 %V 22 %N 1-2 %U http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a1/ %G en %F DMPS_2002_22_1-2_a1
Nouali, Karima; Fellag, Hocine. Approximate bias for first-order autoregressive model with uniform innovations. Small sample case. Discussiones Mathematicae. Probability and Statistics, Tome 22 (2002) no. 1-2, pp. 15-26. http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a1/
[1] J. Andel, On AR(1) processes with exponential white noise, Communication in Statistics, A, Theory and Methods 17 (5) (1988), 1481-1495.
[2] C.B. Bell and E.P. Smith, Inference for non-negative autoregressive schemes, Communication in Statistics, Theory and Methods 15 (8) (1986), 2267-2293.
[3] P. Bickel and K. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics, Wiley: New York 1977.
[4] Y.J. Choi, Kolmogorov-Smirnov Test with Nuisance Parameters in Uniform Case, M.S. Thesis, University of Washington 1980.
[5] A.J. Fox, Outliers in time series, J. Roy. Stat. Soc. 34 (B) (1972), 350-363.