Simple fractions and linear decomposition of some convolutions of measures
Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 2, pp. 149-157.

Voir la notice de l'article provenant de la source Library of Science

Every characteristic function φ can be written in the following way:
Keywords: measure, convolution of measures, characteristic function, simple fraction
@article{DMPS_2001_21_2_a5,
     author = {Misiewicz, Jolanta and Cooke, Roger},
     title = {Simple fractions and linear decomposition of some convolutions of measures},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {149--157},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     zbl = {1012.60005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a5/}
}
TY  - JOUR
AU  - Misiewicz, Jolanta
AU  - Cooke, Roger
TI  - Simple fractions and linear decomposition of some convolutions of measures
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2001
SP  - 149
EP  - 157
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a5/
LA  - en
ID  - DMPS_2001_21_2_a5
ER  - 
%0 Journal Article
%A Misiewicz, Jolanta
%A Cooke, Roger
%T Simple fractions and linear decomposition of some convolutions of measures
%J Discussiones Mathematicae. Probability and Statistics
%D 2001
%P 149-157
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a5/
%G en
%F DMPS_2001_21_2_a5
Misiewicz, Jolanta; Cooke, Roger. Simple fractions and linear decomposition of some convolutions of measures. Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 2, pp. 149-157. http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a5/

[1] W. Feller, An Introduction to Probability Theory and its Application, volume II. Wiley, New York 1966.

[2] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Fifth Edition, Academic Press 1997.

[3] N. Jacobson, Basic Algebra I, W.H. Freeman and Company, San Francisco 1974.

[4] S. Lang, Algebra, Addison-Weslay 1970, Reading USA, Second Edition.