Some observations on the constructions of chemical balance weighing designs
Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 2, pp. 99-110.

Voir la notice de l'article provenant de la source Library of Science

The construction of some optimum chemical balance weighing designs from affine μ-resolvable balanced incomplete block (BIB) designs are discussed in the light of a characterization theorem on the parameters of affine μ-resolvable BIB designs as given by Mohan and Kageyama (1982), for the sake of practical use of researchers who need some selective designs for the construction of chemical balance weighing designs.
Keywords: ptimum chemical balance weighing design, BIB design, ARBIB design, μ-ARBIB design
@article{DMPS_2001_21_2_a2,
     author = {Mohan, Ratnakaram and Ceranka, Bronis{\l}aw and Kageyama, Sanpei},
     title = {Some observations on the constructions of chemical balance weighing designs},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     zbl = {1016.05008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a2/}
}
TY  - JOUR
AU  - Mohan, Ratnakaram
AU  - Ceranka, Bronisław
AU  - Kageyama, Sanpei
TI  - Some observations on the constructions of chemical balance weighing designs
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2001
SP  - 99
EP  - 110
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a2/
LA  - en
ID  - DMPS_2001_21_2_a2
ER  - 
%0 Journal Article
%A Mohan, Ratnakaram
%A Ceranka, Bronisław
%A Kageyama, Sanpei
%T Some observations on the constructions of chemical balance weighing designs
%J Discussiones Mathematicae. Probability and Statistics
%D 2001
%P 99-110
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a2/
%G en
%F DMPS_2001_21_2_a2
Mohan, Ratnakaram; Ceranka, Bronisław; Kageyama, Sanpei. Some observations on the constructions of chemical balance weighing designs. Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 2, pp. 99-110. http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a2/

[1] M. Bhaskararao, Weighing designs when n is odd, Ann. Math. Statist. 37 (1966), 1371-1381.

[2] R.C. Bose, A note on the resolvability of balanced incomplete block designs, Sankhya 6 (1942), 105-110.

[3] B. Ceranka and K. Katulska, A relation between BIB designs and chemical balance weighing designs, Statist. Prob. Lett. 5 (1987), 339-341.

[4] A. Dey, On some chemical balance weighing designs, Austral. J. Statist. 13 (1970), 131-141.

[5] S. Kageyama and R.N. Mohan, Constructions of α-resolvable PBIB designs, Calcutta Statist. Assoc. Bull. 34 (1980), 221-224.

[6] S. Kageyama and R.N. Mohan, On μ-resolvable BIB designs, Discrete Math. 45 (1983), 113-122.

[7] S. Kageyama and G.M. Saha, Note on the construction of optimum chemical balance weighing designs, Ann. Inst. Statist. Math., Part A 35 (1983), 447-452.

[8] R.N. Mohan and S. Kageyama, On a characterization of affine μ-resolvable BIB designs, Utilitas Math. 22 (1982), 17-23.

[9] A.K. Nigam, A note on optimum chemical balance weighing designs, Austral. J. Statist. 16 (1974), 50-52.

[10] D. Raghavarao, Some optimum weighing deigns, Ann. Math. Statist. 30 (1959), 295-303.

[11] D. Raghavarao, Some aspects of weighing deigns, Ann. Math. Statist. 31, (1960), 878-884.

[12] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, Dover, New York 1988.

[13] G.M. Saha, A note on relation between incomplete block and weighing designs, Ann. Inst. Statist. Math. 27 (1975), 387-390.