Selection theorems for stochastic set-valued integrals
Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 1, pp. 63-75.

Voir la notice de l'article provenant de la source Library of Science

Some special selections theorems for stochastic set-valued integrals with respect to the Lebesgue measure are given.
Keywords: stochastic set-valued integrals, nonanticipated stochastic processes, diagonal convexity, selections
@article{DMPS_2001_21_1_a4,
     author = {Kisielewicz, Micha{\l}},
     title = {Selection theorems for stochastic set-valued integrals},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     zbl = {1169.93405},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a4/}
}
TY  - JOUR
AU  - Kisielewicz, Michał
TI  - Selection theorems for stochastic set-valued integrals
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2001
SP  - 63
EP  - 75
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a4/
LA  - en
ID  - DMPS_2001_21_1_a4
ER  - 
%0 Journal Article
%A Kisielewicz, Michał
%T Selection theorems for stochastic set-valued integrals
%J Discussiones Mathematicae. Probability and Statistics
%D 2001
%P 63-75
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a4/
%G en
%F DMPS_2001_21_1_a4
Kisielewicz, Michał. Selection theorems for stochastic set-valued integrals. Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 1, pp. 63-75. http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a4/

[1] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800.

[2] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ., PWN, Dortrecht-Boston-London-Warszawa 1991.

[3] M. Kisielewicz, Weak compactness of solution set of stochastic differential inclusions, Topol. Meth. in Nonlin. Anal. (presented to print).

[4] L. Rybiński, On Carathéodory type selections, Fund. Math. 125 (1985), 187-193.