Testing on the first-order autoregressive model with contaminated exponential white noise finite sample case
Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 1, pp. 11-20.

Voir la notice de l'article provenant de la source Library of Science

The testing problem on the first-order autoregressive parameter in finite sample case is considered. The innovations are distributed according to the exponential distribution. The aim of this paper is to study how much the size of this test changes when, at some time k, an innovation outlier contaminant occurs. We show that the test is rather sensitive to these changes.
Keywords: autoregressive model, exponential distribution, outlier, test
@article{DMPS_2001_21_1_a1,
     author = {Fellag, Hocine},
     title = {Testing on the first-order autoregressive model with contaminated exponential white noise finite sample case},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     zbl = {0984.62064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a1/}
}
TY  - JOUR
AU  - Fellag, Hocine
TI  - Testing on the first-order autoregressive model with contaminated exponential white noise finite sample case
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2001
SP  - 11
EP  - 20
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a1/
LA  - en
ID  - DMPS_2001_21_1_a1
ER  - 
%0 Journal Article
%A Fellag, Hocine
%T Testing on the first-order autoregressive model with contaminated exponential white noise finite sample case
%J Discussiones Mathematicae. Probability and Statistics
%D 2001
%P 11-20
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a1/
%G en
%F DMPS_2001_21_1_a1
Fellag, Hocine. Testing on the first-order autoregressive model with contaminated exponential white noise finite sample case. Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 1, pp. 11-20. http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a1/

[1] C.B. Bell and E.P. Smith, Inference for non-negative autoregressive schemes, Communication in Statistics, Theory and Methods, 15 (8) (1986), 2267-2293.

[2] Y. Berkoun, H. Fellag, M. Ibazizen and R. Zieliński, Maximal size of the student and the Anova tests under exactly one contaminant, Journal of Mathematical Sciences 81, (5) (1996), 2900-2904.

[3] A.J. Fox, Outliers in time series, J. Roy. Stat. Soc. 34 (B) (1972), 350-363.

[4] D.P. Gaver and P.A.W. Lewis, First-order autoregressive Gamma sequences and point process, Adv. Appl. Prob. 12 (1980), 727-745.

[5] G. Saporta, Probabilités, Analyses des données et Statistique, Technip Ed. (1990).

[6] M.A.A. Turkman, Bayesian analysis of an autoregressive process with exponential white noise, Statistics 21 (4) (1990), 601-608.