Tests of independence of normal random variables with known and unknown variance ratio
Discussiones Mathematicae. Probability and Statistics, Tome 20 (2000) no. 2, pp. 233-247.

Voir la notice de l'article provenant de la source Library of Science

In the paper, a new approach to construction test for independenceof two-dimensional normally distributed random vectors is given under the assumption that the ratio of the variances is known. This test is uniformly better than the t-Student test. A comparison of the power of these two tests is given. A behaviour of this test forsome ε-contamination of the original model is also shown. In the general case when the variance ratio is unknown, an adaptive test is presented. The equivalence between this test and the classical t-test for independence of normal variables is shown. Moreover, the confidence interval for correlation coefficient is given. The results follow from the unified theory of testing hypotheses both for fixed effects and variance components presented in papers [6] and [7].
Keywords: mixed linear models, variance components, correlation, quadratic unbiased estimation, testing hypotheses, confidence intervals
@article{DMPS_2000_20_2_a5,
     author = {G\k{a}siorek, Edward and Michalski, Andrzej and Zmy\'slony, Roman},
     title = {Tests of independence of normal random variables with known and unknown variance ratio},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {233--247},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     zbl = {1123.62309},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a5/}
}
TY  - JOUR
AU  - Gąsiorek, Edward
AU  - Michalski, Andrzej
AU  - Zmyślony, Roman
TI  - Tests of independence of normal random variables with known and unknown variance ratio
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2000
SP  - 233
EP  - 247
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a5/
LA  - en
ID  - DMPS_2000_20_2_a5
ER  - 
%0 Journal Article
%A Gąsiorek, Edward
%A Michalski, Andrzej
%A Zmyślony, Roman
%T Tests of independence of normal random variables with known and unknown variance ratio
%J Discussiones Mathematicae. Probability and Statistics
%D 2000
%P 233-247
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a5/
%G en
%F DMPS_2000_20_2_a5
Gąsiorek, Edward; Michalski, Andrzej; Zmyślony, Roman. Tests of independence of normal random variables with known and unknown variance ratio. Discussiones Mathematicae. Probability and Statistics, Tome 20 (2000) no. 2, pp. 233-247. http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a5/

[1] S. Geisser, Estimation in the uniform covariance case, JASA 59 (1964), 477-483.

[2] S. Gnot and A. Michalski, Tests based on admissible estimators in two variance components models, Statistics 25 (1994), 213-223.

[3] N.L. Johnson and S. Kotz, Distribution in Statistics: continuous univariate distributions - 2, Houghton Mifflin, New York 1970.

[4] J.M. Kinderman and J.F. Monahan, Computer generation of random variables using the ratio of uniform deviates, ACH Trans. Math. Soft. 3 (1977), 257-260.

[5] E.L. Lehmann, Testing Statistical Hypotheses, Wiley, New York 1986.

[6] A. Michalski and R. Zmyślony, Testing hypotheses for variance components in mixed linear models, Statistics 27 (1996), 297-310.

[7] A. Michalski and R. Zmyślony, Testing hypotheses for linear functions of parameters in mixed linear models, Tatra Mountains Math. Publ. 17 (1999), 103-110.

[8] J. Seely, Quadratic subspaces and completeness, Ann. Math. Statist. 42 (1971), 710-721.

[9] R. Zmyślony, On estimation of parameters in linear models, Zastosowania Matematyki 15 (1976), 271-276.

[10] R. Zmyślony, Completeness for a family of normal distributions, Banach Center Publications 6 (1980), 355-357.